Abstract:
A semiconductor chip comprises a semiconductor substrate having integrated circuits formed on a cell region and a peripheral circuit region adjacent to each other. A bond pad-wiring pattern is formed on the semiconductor substrate. A pad-rearrangement pattern is electrically connected to the bond pad-wiring pattern. The pad-rearrangement pattern includes a bond pad disposed over at least a part of the cell region. Thus, with the embodiments of the present invention, the overall chip size can thereby be substantially reduced and an MCP can be fabricated without the problems mentioned above.
Abstract:
A non-volatile memory device having an improved erase efficiency and a method of manufacturing the same are provided. The method includes: forming a stack structure of a tunnel dielectric layer, a charge trapping layer, a charge blocking layer and a gate on a semiconductor substrate; and performing a post treatment of the gate using an oxygen or CF4 plasma or ion implantation to increase a work function of an element forming the gate. Since the work function of the metal layer forming the gate can be further increased, an electron back tunneling can be suppressed during an erase operation.
Abstract:
A printed circuit board and a manufacturing method thereof are disclosed. The printed circuit board, which includes a first insulation layer, a first via that penetrates the first insulation layer, and a first pad formed on one surface of the first insulation layer, where a whole of or a portion of the first pad is buried in the first via, has a portion of or the whole of the pad buried in the via, so that the contact area between the pad and the via may be increased, and the printed circuit board can be given greater reliability.
Abstract:
Provided are a complementary nonvolatile memory device, methods of operating and manufacturing the same, a logic device and semiconductor device having the same, and a reading circuit for the same. The complementary nonvolatile memory device includes a first nonvolatile memory and a second nonvolatile memory which are sequentially stacked and have a complementary relationship. The first and second nonvolatile memories are arranged so that upper surfaces thereof are contiguous.
Abstract:
A non-volatile memory device including a metal-insulator transition (MIT) material is provided. The non-volatile memory device includes a gate stack having a tunneling layer, a charge trap layer, a blocking layer and a gate electrode formed on a substrate, wherein at least one of the tunneling layer and the blocking layer is formed of an MIT (metal-insulator transition) material.
Abstract:
To better utilize the variable bandwidth of wireless links, a network node in accordance with the present invention escapes rigid bandwidth hierarchy of conventional TDM protocols, which is not suited for fully using the available bandwidth of a wireless link. Specifically, many embodiments of the present invention use TDM frames that have payloads, which do not strictly conform to the bandwidth hierarchy of conventional TDM protocols. For example, many embodiments of the present invention form TDM frames having a payload that is a non-integer multiple of a base bandwidth, such as OC-1/STS-1.
Abstract:
Metal oxide nanowires are being investigated to make nanodevices and nanosensors. High operation temperatures or vacuum is required in the manufacturing of metal oxide nanowires by existing vapour phase evaporation methods. This invention provides a method of manufacturing metal oxide nanowires by first providing a metal to form a non-linear substantially planar structure defining a surface. The metal is then heated and maintained at a temperature from 300 to 800° C., and then exposed to oxygen and water vapour containing air stream for a sufficient period of time to form the metal oxide nanowires. The oxygen containing air stream flows in a direction substantially parallel to the plane of the structure. Relatively low temperatures may be used and no vacuum is required in this method, thereby reducing the overall manufacturing costs. Further, this method is able to manufacture different densities of the metal oxide nanowires simultaneously.
Abstract:
A routing system decouples the routing functionality from the packet forwarding functionality. The decoupling of functionality is accomplished by coupling a set of routing engines to a set of packet-forwarding engines via a switch. The decoupling of functionality allows the routing system to easily be reconfigured and scaled. The decoupling of functionality also reduces the susceptibility of concurrently executing software processes from the malfunction of a single software process.
Abstract:
A process for the preparation of chiral 4-hydroxy-2-oxo-1-pyrrolidine acetamide includes adding sodium cyanide together with citric acid to a solution of chiral epichlorohydrin to obtain chiral 3-chloro-2-hydroxypropionitrile by ring opening reaction of the chiral epichlorohydrin, reacting the obtained product with an alcohol containing hydrochloride gas to obtain chiral 4-chloro-3-hydroxybutyric acid ester, and reacting the obtained product in a presence of a base with glycinamide or with glycine ester accompanied by ammonolysis with ammonia to produce the targeted chiral 4-hydroxy-2-oxo-1-pyrrolidine acetamide.
Abstract:
In a silicon-oxide-nitride-oxide-silicon (SONOS) memory device, and methods of manufacturing and operating the same, the SONOS memory device includes a semiconductor layer including source and drain regions and a channel region, an upper stack structure formed on the semiconductor layer, the upper stack structure and the semiconductor layer forming an upper SONOS memory device, and a lower stack structure formed under the semiconductor layer, the lower stack structure and the semiconductor layer forming a lower SONOS memory device.