Abstract:
Disclosed is a charging stand for an electric vehicle, the charging stand including a main body, a door coupled to the main body in such a way as to be opened or closed, and an alarm device generating an alarm if the door is opened, wherein the alarm device has a door sensing unit causing a change in impedance if the door is opened, a controller receiving a signal transmitted from the door sensing unit, and a switching circuit activated by the controller to generate an alarm or store an alarm history, so that the charging stand is advantageous in that the opening of the door can be precisely detected, and the alarm history can be checked later.
Abstract:
To more fully utilize the available bandwidth of a network link, network nodes in accordance with the present invention allow TDM data to be combined with packet data. A Packet/TDM cross connect switch, having both a TDM switch and a packet switch, is used in these embodiments. Data packets are transformed into TDM packet columns. The TDM packet columns are combined with standard TDM data columns in the payload of a TDM data frame. Data packets may be sorted based on a priority scheme, in which high priority data packets are given precedence over lower priority data. However, both high priority and low priority may be combined in a TDM packet column.
Abstract:
Disclosed is an apparatus for operating a door of a connector connection part in an EV charging stand, which is configured to control an operation of opening or closing the door of the connector connection part of the EV charging stand to which a connector of an electric vehicle is connected for a charging operation, using ID information of an EV user, and which is advantageous in that the connector connection part of the EV charging stand is prevented from being randomly opened when the electric vehicle is not charged, thus preventing an electric shock accident or damage to the connection part, and an unauthorized user is prevented from using the EV charging stand, thus effectively preventing the electric vehicle from being stolen.
Abstract:
Provided are a complementary nonvolatile memory device, methods of operating and manufacturing the same, a logic device and semiconductor device having the same, and a reading circuit for the same. The complementary nonvolatile memory device includes a first nonvolatile memory and a second nonvolatile memory which are sequentially stacked and have a complementary relationship. The first and second nonvolatile memories are arranged so that upper surfaces thereof are contiguous.
Abstract:
Disclosed is an apparatus for monitoring a fault current in a power system. The apparatus does not rectify an AC signal detected from a power system but full wave-rectifies the AC signal using a bridge diode and then monitors a fault current. Particularly, current and voltage in the power system are respectively detected through a current transformer and a Rogowski coil, and presence of occurrence of an accident is parallely monitored using the detected current and voltage. Thus, it is possible to prevent a response delay due to a rising time generated when the AC signal is smoothed to a DC signal through a capacitor and to prevent malfunction caused by chattering while performing a fast response at the time when a fault current is generated for the first time.
Abstract:
Methods of manufacturing non-volatile memory devices that can reduce or prevent loss of charges stored in a charge storage layer and/or that can improve charge storage capacity by neutral beam irradiation of an insulating layer are disclosed. The methods include forming a tunneling insulating layer on a substrate, forming a charge storage layer on the tunneling insulating layer, forming a blocking insulating layer on the charge storage layer, irradiating the blocking insulating layer and/or the tunneling insulating layer with a neutral beam, and forming a gate conductive layer on the blocking insulating layer.
Abstract:
In one embodiment, a semiconductor chip has one or more peripheral bond pads. The semiconductor chip comprises a semiconductor substrate having a cell region and a peripheral circuit region adjacent to each other; a bond pad-wiring pattern formed on at least a part of the peripheral region of the semiconductor substrate; a passivation layer formed on the bond pad-wiring pattern and exposed portions of the semiconductor substrate; a pad-rearrangement pattern disposed over the passivation layer and electrically connected to the bond pad-wiring pattern; and an insulating layer formed over the pad-rearrangement pattern. The insulating layer has an opening therein that exposes a portion of the pad-rearrangement pattern to define a bond pad. The bond pad is disposed over at least a part of the cell region.
Abstract:
A printed circuit board manufacturing system and a manufacturing method thereof are disclosed. A method of manufacturing printed circuit board, comprising: providing a substrate that comprises a pad and an insulation layer covering the pad; acquiring an image of the substrate; acquiring location information of the pad by analyzing the image of the substrate; forming a via hole by removing a part of the insulation layer that corresponds the location information of the pad; and forming a via by filling the via hole with a conductive material, provides improved process conformity, even if the substrate has partial or nonlinear deformation, by considering the location information of the pad in the via hole forming. The improved conformity may allow more flexibility to substrate design and more integrity for circuitries on printed circuit board.