摘要:
Compositions and methods for controlled polymerization and/or oligomerization of hydrosilanes compounds including those of the general formulae SinH2n and SinH2n+2 as well as alkyl- and arylsilanes, to produce soluble silicon polymers as a precursor to silicon films having low carbon content.
摘要:
This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates, as well as methods and uses for such substrates.
摘要:
The present invention provides polymeric compositions that can be used to modify charge transport across a nanocrystal surface or within a nanocrystal-containing matrix, as well as methods for making and using the novel compositions.
摘要:
Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure and for reversibly modifying nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
摘要:
The present invention provides compositions (small molecules, oligomers and polymers) that can be used to modify charge transport across a nanocrystal surface or within a nanocrystal-containing matrix, as well as methods for making and using the novel compositions.
摘要:
High precision capacitors and methods for forming the same utilizing a precise and highly conformal deposition process for depositing an insulating layer on substrates of various roughness and composition. The method generally comprises the steps of depositing a first insulating layer on a metal substrate by atomic layer deposition (ALD); (b) forming a first capacitor electrode on the first insulating layer; and (c) forming a second insulating layer on the first insulating layer and on or adjacent to the first capacitor electrode. Embodiments provide an improved deposition process that produces a highly conformal insulating layer on a wide range of substrates, and thereby, an improved capacitor.
摘要:
High precision capacitors and methods for forming the same utilizing a precise and highly conformal deposition process for depositing an insulating layer on substrates of various roughness and composition. The method generally comprises the steps of depositing a first insulating layer on a metal substrate by atomic layer deposition (ALD); (b) forming a first capacitor electrode on the first insulating layer; and (c) forming a second insulating layer on the first insulating layer and on or adjacent to the first capacitor electrode. Embodiments provide an improved deposition process that produces a highly conformal insulating layer on a wide range of substrates, and thereby, an improved capacitor.
摘要:
Compositions and methods for controlled polymerization and/or oligomerization of hydrosilanes compounds including those of the general formulae SinH2n and SinH2n+2 as well as alkyl- and arylsilanes, to produce soluble silicon polymers as a precursor to silicon films having low carbon content.
摘要:
The present invention provides polymeric compositions that can be used to modify charge transport across a nanocrystal surface or within a nanocrystal-containing matrix, as well as methods for making and using the novel compositions.
摘要:
The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature. Uniform etching allows for an efficient method of reducing a critical dimension of an electrically active structure by simple isotropic etch.