Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a contact opening in an inter layer dielectric (ILD) disposed on a substrate, wherein a source/drain contact area is exposed, forming a rare earth metal layer on the source/drain contact area, forming a transition metal layer on the rare earth metal layer; and annealing the rare earth metal layer and the transition metal layer to form a metal silicide stack structure.
Abstract:
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
Abstract:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
Abstract:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
Abstract:
Deep gate-all-around semiconductor devices having germanium or group III-V active layers are described. For example, a non-planar semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a hetero-junction between an upper layer and a lower layer of differing composition. An active layer is disposed above the hetero-structure and has a composition different from the upper and lower layers of the hetero-structure. A gate electrode stack is disposed on and completely surrounds a channel region of the active layer, and is disposed in a trench in the upper layer and at least partially in the lower layer of the hetero-structure. Source and drain regions are disposed in the active layer and in the upper layer, but not in the lower layer, on either side of the gate electrode stack.
Abstract:
Embodiments of the present disclosure provide techniques and configurations for stacking transistors of a memory device. In one embodiment, an apparatus includes a semiconductor substrate, a plurality of fin structures formed on the semiconductor substrate, wherein an individual fin structure of the plurality of fin structures includes a first isolation layer disposed on the semiconductor substrate, a first channel layer disposed on the first isolation layer, a second isolation layer disposed on the first channel layer, and a second channel layer disposed on the second isolation layer, and a gate terminal capacitively coupled with the first channel layer to control flow of electrical current through the first channel layer for a first transistor and capacitively coupled with the second channel layer to control flow of electrical current through the second channel layer for a second transistor. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure provide contact techniques and configurations for reducing parasitic resistance in nanowire transistors. In one embodiment, an apparatus includes a semiconductor substrate, an isolation layer formed on the semiconductor substrate, a channel layer including nanowire material formed on the isolation layer to provide a channel for a transistor, and a contact coupled with the channel layer, the contact being configured to surround, in at least one planar dimension, nanowire material of the channel layer and to provide a source terminal or drain terminal for the transistor.
Abstract:
An embodiment includes depositing a material onto a substrate where the material includes a different lattice constant than the substrate (e.g., III-V or IV epitaxial (EPI) material on a Si substrate). An embodiment includes an EPI layer formed within a trench having walls that narrow as the trench extends upwards. An embodiment includes an EPI layer formed within a trench using multiple growth temperatures. A defect barrier, formed in the EPI layer when the temperature changes, contains defects within the trench and below the defect barrier. The EPI layer above the defect barrier and within the trench is relatively defect free. An embodiment includes an EPI layer annealed within a trench to induce defect annihilation. An embodiment includes an EPI superlattice formed within a trench and covered with a relatively defect free EPI layer (that is still included in the trench). Other embodiments are described herein.
Abstract:
An embodiment of the invention includes an epitaxial layer that directly contacts, for example, a nanowire, fin, or pillar in a manner that allows the layer to relax with two or three degrees of freedom. The epitaxial layer may be included in a channel region of a transistor. The nanowire, fin, or pillar may be removed to provide greater access to the epitaxial layer. Doing so may allow for a “all-around gate” structure where the gate surrounds the top, bottom, and sidewalls of the epitaxial layer. Other embodiments are described herein.
Abstract:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.