Abstract:
The present invention relates to surveillance and/or identification devices having capacitors connected in parallel or in series, and methods of making and using such devices. Devices with capacitors connected in parallel, where one capacitor is fabricated with a relatively thick capacitor dielectric and another is fabricated with a relatively thin capacitor dielectric achieve both a high-precision capacitance and a low breakdown voltage for relatively easy surveillance tag deactivation. Devices with capacitors connected in series result in increased lateral dimensions of a small capacitor. This makes the capacitor easier to fabricate using techniques that may have relatively limited resolution capabilities.
Abstract:
A memory cell is provided that includes a steering element, and a non-volatile state change element coupled in series with the steering element. The steering element and state change element are disposed in a vertically-oriented pillar. Other aspects are also provided.
Abstract:
The present invention relates to methods of making capacitors for use in surveillance/identification tags or devices, and methods of using such surveillance/identification devices. The capacitors manufactured according to the methods of the present invention and used in the surveillance/identification devices described herein comprise printed conductive and dielectric layers. The methods and devices of the present invention improve the manufacturing tolerances associated with conventional metal-plastic-metal capacitor, as well as the deactivation reliability of the capacitor used in a surveillance/identification tag or device.
Abstract:
There is provided a monolithic three dimensional array of charge storage devices which includes a plurality of device levels, wherein at least one surface between two successive device levels is planarized by chemical mechanical polishing.
Abstract:
A method for reliable deactivation of a security (EAS) tag, and an apparatus for accomplishing the same. The method generally includes placing a security tag a first distance from a deactivation apparatus; determining whether a deactivation confirmation signal has occurred; and when it is determined that the deactivation confirmation signal did not occur, placing the security tag closer to the deactivation apparatus. The deactivation apparatus generally includes a pad configured to transmit a deactivation pulse having a power sufficient to deactivate the security tag when it is within a deactivation field; a tag reader configured to detect a signal transmission from an active tag when it is in a read field of the deactivation apparatus; a confirmation indicator configured to indicate that the pad has sent the deactivation pulse; and logic configured to determine when an active tag is in the deactivation field or the read field, and communicate to the confirmation indicator that the pad has sent the deactivation pulse.
Abstract:
Circuits and circuit elements configured to generate a random delay, a monostable oscillator, circuits configured to broadcasting repetitive messages wireless systems, and methods for forming such circuits, devices, and systems are disclosed. The present invention advantageously provides relatively low cost delay generating circuitry based on TFT technology in wireless electronics applications, particularly in RFID applications. Such novel, technically simplified, low cost TFT-based delay generating circuitry enables novel wireless circuits, devices and systems, and methods for producing such circuits, devices and systems.
Abstract:
A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
Abstract:
The invention relates to bar compositions comprising thermochromatic pigment or dye signaling temperature and/or benefit agent release. In a preferred embodiment, the pigment is introduced in the form of a separate domain (e.g., separate chips) which separate chip or chips is combined with a surfactant-containing chips to form the final bar.
Abstract:
The invention relates to method of signaling temperature and/or benefit agent release using bar compositions comprising thermochromatic pigment or dye. In a preferred embodiment, the pigment is introduced in the form of a separate domain (e.g., separate chips) which separate chip or chips is combined with a surfactant-containing chips to form the final bar.
Abstract:
Multi-mode (e.g., EAS and RFID) tags and methods for making and using the same are disclosed. The tag generally includes an antenna, an electronic article surveillance (EAS) function block coupled to the antenna, and one or more identification function blocks coupled to the antenna in parallel with the EAS function block. The method of reading the tag generally includes the steps of applying an electric field to the tag, detecting the tag when the electric field has a relatively low power, and detecting an identification signal from the tag when the electric field has a relatively high power. The present invention advantageously enables a single tag to be used for both inventory and anti-theft purposes, thereby improving inventory management and control at reduced system and/or “per-article” costs.