Abstract:
A processor system as presented herein includes a processor core, cache memory coupled to the processor core, a memory controller coupled to the cache memory, and a system memory component coupled to the memory controller. The system memory component includes a plurality of independent memory channels configured to store data blocks, wherein the memory controller controls the storing of parity bits in at least one of the plurality of independent memory channels. In some implementations, the system memory is realized as a die-stacked memory component.
Abstract:
A method and a system are provided for partitioning a system data bus. The method can include partitioning off a portion of a system data bus that includes one or more faulty bits to form a partitioned data bus. Further, the method includes transferring data over the partitioned data bus to compensate for data loss due to the one or more faulty bits in the system data bus.
Abstract:
A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.
Abstract:
A processor system as presented herein includes a processor core, cache memory coupled to the processor core, a memory controller coupled to the cache memory, and a system memory component coupled to the memory controller. The system memory component includes a plurality of independent memory channels configured to store data blocks, wherein the memory controller controls the storing of parity bits in at least one of the plurality of independent memory channels. In some implementations, the system memory is realized as a die-stacked memory component.
Abstract:
The described embodiments include a cache with a plurality of banks that includes a cache controller. In these embodiments, the cache controller determines a value representing non-native cache blocks stored in at least one bank in the cache, wherein a cache block is non-native to a bank when a home for the cache block is in a predetermined location relative to the bank. Then, based on the value representing non-native cache blocks stored in the at least one bank, the cache controller determines at least one bank in the cache to be transitioned from a first power mode to a second power mode. Next, the cache controller transitions the determined at least one bank in the cache from the first power mode to the second power mode.
Abstract:
A method of way prediction for a data cache having a plurality of ways is provided. Responsive to an instruction to access a stack data block, the method accesses identifying information associated with a plurality of most recently accessed ways of a data cache to determine whether the stack data block resides in one of the plurality of most recently accessed ways of the data cache, wherein the identifying information is accessed from a subset of an array of identifying information corresponding to the plurality of most recently accessed ways; and when the stack data block resides in one of the plurality of most recently accessed ways of the data cache, the method accesses the stack data block from the data cache.
Abstract:
The described embodiments include a core that uses predictions for store-to-load forwarding. In the described embodiments, the core comprises a load-store unit, a store buffer, and a prediction mechanism. During operation, the prediction mechanism generates a prediction that a load will be satisfied using data forwarded from the store buffer because the load loads data from a memory location in a stack. Based on the prediction, the load-store unit first sends a request for the data to the store buffer in an attempt to satisfy the load using data forwarded from the store buffer. If data is returned from the store buffer, the load is satisfied using the data. However, if the attempt to satisfy the load using data forwarded from the store buffer is unsuccessful, the load-store unit then separately sends a request for the data to a cache to satisfy the load.
Abstract:
A die-stacked hybrid memory device implements a first set of one or more memory dies implementing first memory cell circuitry of a first memory architecture type and a second set of one or more memory dies implementing second memory cell circuitry of a second memory architecture type different than the first memory architecture type. The die-stacked hybrid memory device further includes a set of one or more logic dies electrically coupled to the first and second sets of one or more memory dies, the set of one or more logic dies comprising a memory interface and a page migration manager, the memory interface coupleable to a device external to the die-stacked hybrid memory device, and the page migration manager to transfer memory pages between the first set of one or more memory dies and the second set of one or more memory dies.
Abstract:
A die-stacked hybrid memory device implements a first set of one or more memory dies implementing first memory cell circuitry of a first memory architecture type and a second set of one or more memory dies implementing second memory cell circuitry of a second memory architecture type different than the first memory architecture type. The die-stacked hybrid memory device further includes a set of one or more logic dies electrically coupled to the first and second sets of one or more memory dies, the set of one or more logic dies comprising a memory interface and a page migration manager, the memory interface coupleable to a device external to the die-stacked hybrid memory device, and the page migration manager to transfer memory pages between the first set of one or more memory dies and the second set of one or more memory dies.
Abstract:
A method and a system are provided for partitioning a system data bus. The method can include partitioning off a portion of a system data bus that includes one or more faulty bits to form a partitioned data bus. Further, the method includes transferring data over the partitioned data bus to compensate for data loss due to the one or more faulty bits in the system data bus.