摘要:
A method and apparatus for coating a plurality of semiconductor devices that is particularly adapted to coating LEDs with a coating material containing conversion particles. One method according to the invention comprises providing a mold with a formation cavity. A plurality of semiconductor devices are mounted within the mold formation cavity and a curable coating material is injected or otherwise introduced into the mold to fill the mold formation cavity and at least partially cover the semiconductor devices. The coating material is cured so that the semiconductor devices are at least partially embedded in the cured coating material. The cured coating material with the embedded semiconductor devices is removed from the formation cavity. The semiconductor devices are separated so that each is at least partially covered by a layer of the cured coating material. One embodiment of an apparatus according to the invention for coating a plurality of semiconductor devices comprises a mold housing having a formation cavity arranged to hold semiconductor devices. The formation cavity is also arranged so that a curable coating material can be injected into and fills the formation cavity to at least partially covering the semiconductor devices.
摘要:
Methods of packaging a semiconductor light emitting device in a reflector having a moat positioned between a lower and an upper sidewall thereof, the upper and lower sidewall defining a reflective cavity, include dispensing encapsulant material into the reflective cavity including the light emitting device therein to cover the light emitting device and to form a convex meniscus of encapsulant material in the reflective cavity extending from an edge of the moat without contacting the upper sidewall of the reflector. The encapsulant material in the reflective cavity is cured. Packaged semiconductor light emitting devices and reflectors for the same are also provided.
摘要:
A high efficiency light emitting diode with a composite high reflectivity layer integral to said LED or package to improve emission efficiency. One embodiment of a light emitting diode (LED) chip comprises a LED and a composite high reflectivity layer integral to the LED to reflect light emitted from the active region. One embodiment of a LED package comprises a LED mounted on a substrate with an encapsulant over said LED and a composite high reflectivity layer arranged to reflect emitted light. The composite layer comprises a plurality of layers such that at least one of said plurality of layers has an index of refraction lower than the encapsulant and a reflective layer on a side of said plurality of layers opposite the LED. In some embodiments, conductive vias are included through the composite layer to allow an electrical signal to pass through the layer to the LED.
摘要:
A submount for a semiconductor light emitting device includes a semiconductor substrate having a cavity therein configured to receive the light emitting device. A first bond pad is positioned in the cavity to couple to a first node of a light emitting device received in the cavity. A second bond pad is positioned in the cavity to couple to a second node of a light emitting device positioned therein. Light emitting devices including a solid wavelength conversion member and methods for forming the same are also provided.
摘要:
Light emitting diodes include a diode region comprising a gallium nitride-based n-type layer, an active region and a gallium nitride-based p-type layer. A substrate is provided on the gallium nitride-based n-type layer and optically matched to the diode region. The substrate has a first face remote from the gallium nitride-based n-type layer, a second face adjacent the gallium nitride-based n-type layer and a sidewall therebetween. At least a portion of the sidewall is beveled, so as to extend oblique to the first and second faces. A reflector may be provided on the gallium nitride-based p-type layer opposite the substrate. Moreover, the diode region may be wider than the second face of the substrate and may include a mesa remote from the first face that is narrower than the first face and the second face.
摘要:
A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.
摘要:
LED packages, and LED lamps and bulbs, are disclosed that are arranged to minimize the CRI and efficiency losses resulting from the overlap of conversion material emission and excitation spectrum. In different devices having conversion materials with this overlap, the present invention arranges the conversion materials to reduce the likelihood that re-emitted light from a first conversion materials will encounter the second conversion material to minimize the risk of re-absorption. In some embodiments this risk is minimized by different arrangements where there is separation between the two phosphors. In some embodiments this separation results less than 50% of re-emitted light from the one phosphor passing into the phosphor where it risks re-absorption.
摘要:
A light emitting diode includes a diode region having a gallium nitride based n-type layer, an active region and a gallium nitride based p-type layer. A first reflector layer is provided on the gallium nitride based p-type layer, and a second reflector layer is provided on the gallium nitride based n-type layer. Bonding layers, a mounting support, a wire bond and/or transparent oxide layers also may be provided.
摘要:
A submount for a semiconductor light emitting device includes a semiconductor substrate having a cavity therein configured to receive the light emitting device. A first bond pad is positioned in the cavity to couple to a first node of a light emitting device received in the cavity. A second bond pad is positioned in the cavity to couple to a second node of a light emitting device positioned therein. Light emitting devices including a solid wavelength conversion member and methods for forming the same are also provided.
摘要:
A submount for a semiconductor light emitting device includes a semiconductor substrate having a cavity therein configured to receive the light emitting device. A first bond pad is positioned in the cavity to couple to a first node of a light emitting device received in the cavity. A second bond pad is positioned in the cavity to couple to a second node of a light emitting device positioned therein. Light emitting devices including a solid wavelength conversion member and methods for forming the same are also provided.