摘要:
The various embodiments described in the specification provide improved mechanisms of removal of unwanted deposits on the bevel edge to improve process yield. The embodiments provide apparatus and methods of treating the bevel edge of a copper plated substrate to convert the copper at the bevel edge to a copper compound that can be wet etched with a fluid at a high etch selectivity in comparison to copper. In one embodiment, the wet etch of the copper compound at high selectivity to copper allows the removal of the non-volatile copper at substrate bevel edge in a wet etch processing chamber. The plasma treatment at bevel edge allows the copper at bevel edge to be removed at precise spatial control to about 2 mm or below, such as about 1 mm, about 0.5 mm or about 0.25 mm, to the very edge of substrate. In addition, the apparatus and methods described above for bevel edge copper removal do not have the problems of copper etching fluid being splashed on the device regions to cause defects and thinning of copper films. Therefore, device yield can be greatly improved.
摘要:
Methods for bevel edge etching are provided. One example method is for etching a film on a bevel edge of a substrate in a plasma etching chamber. The method includes providing the substrate on a substrate support in the plasma etching chamber. The plasma etching chamber has a top edge electrode and a bottom edge electrode disposed to surround the substrate support. Then flowing an etching process gas through a plurality of edge gas feeds disposed along a periphery of the gas delivery plate. The periphery of the gas deliver plate is oriented above the substrate support and the bevel edge of the substrate, and the flowing is further directed to a space between the top edge electrode and bottom edge electrode. And, flowing a tuning gas through a center gas feed of the gas delivery plate.
摘要:
The various embodiments provide apparatus and methods of removal of unwanted deposits near the bevel edge of substrates to improve process yield. The embodiments provide apparatus and methods with center and edge gas feeds as additional process knobs for selecting a most suitable bevel edge etching processes to push the edge exclusion zone further outward towards the edge of substrates. Further the embodiments provide apparatus and methods with tuning gas(es) to change the etching profile at the bevel edge and using a combination of center and edge gas feeds to flow process and tuning gases into the chamber. Both the usage of tuning gas and location of gas feed(s) affect the etching characteristics at bevel edge. Total gas flow, gap distance between the gas delivery plate and substrate surface, pressure, and types of process gas(es) are also found to affect bevel edge etching profiles.
摘要:
A device for cleaning a bevel edge of a semiconductor substrate. The device includes: a lower support having a cylindrical top portion; a lower plasma-exclusion-zone (PEZ) ring surrounding the outer edge of the top portion and adapted to support the substrate; an upper dielectric component opposing the lower support and having a cylindrical bottom portion; an upper PEZ ring surrounding the outer edge of the bottom portion and opposing the lower PEZ ring; and at least one radiofrequency (RF) power source operative to energize process gas into plasma in an annular space defined by the upper and lower PEZ rings, wherein the annular space encloses the bevel edge.
摘要:
Chambers for processing a bevel edge of a substrate are provided. One such chamber includes a bottom electrode defined to support a substrate in the chamber. The bottom electrode has a bottom first level for supporting the substrate and a bottom second level near an outer edge of bottom electrode. The bottom second level is defined at a step below the bottom first level. Further included is a top electrode oriented above the bottom electrode. The top electrode having a top first level and a top second level, where the top first level is opposite the bottom first level and the top second level is opposite the bottom second level. The top second level is defined at a step above the top first level. A bottom ring mount oriented at the bottom second level is included. The bottom ring mount includes a first adjuster for moving a bottom permanent magnet toward and away from the top electrode. Further included is a top ring mount oriented at the top second level. The top ring mount includes a second adjuster for moving a top permanent magnet toward and away from the bottom electrode.
摘要:
A method of bevel edge etching a semiconductor substrate having exposed copper surfaces with a fluorine-containing plasma in a bevel etcher in which the semiconductor substrate is supported on a semiconductor substrate support comprises bevel edge etching the semiconductor substrate with the fluorine-containing plasma in the bevel etcher; evacuating the bevel etcher after the bevel edge etching is completed; flowing defluorinating gas into the bevel etcher; energizing the defluorinating gas into a defluorination plasma at a periphery of the semiconductor substrate; and processing the semiconductor substrate with the defluorination plasma under conditions to prevent discoloration of the exposed copper surfaces of the semiconductor substrate upon exposure, the discoloration occurring upon prolonged exposure to air.
摘要:
A method of etching a conductive layer includes converting at least a portion of the conductive layer and etching the conductive layer to substantially remove the converted portion of the conductive layer and thereby expose a remaining surface. The remaining surface has an average surface roughness of less than about 10 nm. A system for etching a conductive layer is also disclosed.
摘要:
A method of depositing and etching dielectric layers having low dielectric constants and etch rates that vary by at least 3:1 for formation of horizontal interconnects. The amount of carbon or hydrogen in the dielectric layer is varied by changes in deposition conditions to provide low k dielectric layers that can replace etch stop layers or conventional dielectric layers in damascene applications. A dual damascene structure having two or more dielectric layers with dielectric constants lower than about 4 can be deposited in a single reactor and then etched to form vertical and horizontal interconnects by varying the concentration of a carbon:oxygen gas such as carbon monoxide. The etch gases for forming vertical interconnects preferably comprises CO and a fluorocarbon, and CO is preferably excluded from etch gases for forming horizontal interconnects.
摘要:
A method of depositing and etching dielectric layers having low dielectric constants and etch rates that vary by at least 3:1 for formation of horizontal interconnects. The amount of carbon or hydrogen in the dielectric layer is varied by changes in deposition conditions to provide low k dielectric layers that can replace etch stop layers or conventional dielectric layers in damascene applications. A dual damascene structure having two or more dielectric layers with dielectric constants lower than about 4 can be deposited in a single reactor and then etched to form vertical and horizontal interconnects by varying the concentration of a carbon:oxygen gas such as carbon monoxide. The etch gases for forming vertical interconnects preferably comprises CO and a fluorocarbon, and CO is preferably excluded from etch gases for forming horizontal interconnects.
摘要:
The embodiments provide apparatus and methods for removal of etch byproducts, dielectric films and metal films near the substrate bevel edge, and chamber interior to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. In an exemplary embodiment, a plasma processing chamber configured to clean a bevel edge of a substrate is provided. The plasma processing chamber includes a substrate support configured to receive the substrate. The plasma processing chamber also includes a bottom edge electrode surrounding the substrate support. The bottom edge electrode and the substrate support are electrically isolated from one another by a bottom dielectric ring. A surface of the bottom edge electrode facing the substrate is covered by a bottom thin dielectric layer. The plasma processing chamber further includes a top edge electrode surrounding a top insulator plate opposing the substrate support. The top edge electrode is electrically grounded. A surface of the top edge electrode facing the substrate is covered by a top thin dielectric layer. The top edge electrode and the bottom edge electrode oppose one another and are configured to generate a cleaning plasma to clean the bevel edge of the substrate.