Abstract:
Embodiments of wireless adaptive control message apparatus, systems, and methods are described generally herein. Other embodiments may be described and claimed.
Abstract:
Systems, methods, and devices for device-to-device (D2D) distributed scheduling are disclosed herein. User equipment (UE) is configured to measure a received power level for a reference signal received from a target UE and measure received power levels for reference signals received from one or more non-target UEs. The UE is configured to generate a resource usage map for the target UE and the one or more non-target UEs. The UE is configured to determine a priority, with respect to the target UE, for each resource element group based on the resource usage map and an anticipated signal-to-interference ratio (SIR). The UE is configured to transmit data to the target UE during one or more resource element groups with the highest priorities for the target UE.
Abstract:
Embodiments described herein relate generally to a user equipment (“UE”) that is to transmit and receive signals associated with synchronization. The UE may be receive signals associated with synchronization from a plurality of synchronization sources, such as an evolved Node B (“eNB”), a global navigation satellite system (“GNSS”), or another UE. The UE may synchronize to a signal received from a synchronization source based on a priority associated with that synchronization source and/or signal. However, if the UE does not receive any signals associated with synchronization, the UE may generate and transmit a signal that indicates a request for synchronization.
Abstract:
Briefly, in accordance with one or more embodiments, data transmitted from a transmitter is received in a downlink channel, and channel quality data is fed back to the transmitter in a first uplink channel or in a second uplink channel. Channel quality data is feedback at a lower rate on the first uplink channel and channel quality data is feedback at a higher rate on the second uplink channel in the event there is a higher amount of data to be fed back. Link adaptation may be utilized to select a transmission rate on the second uplink channel, wherein the transmission rate is selected based at least in part on a channel condition or a user location.
Abstract:
Embodiments of user equipment and methods for improved uplink transmission power management and scheduling, are generally described herein. For example, in an aspect, a method of uplink power management is presented, the method includes determining whether a total desired transmission power exceeds a total configured maximum output power for a subframe. When the total desired transmission power exceeds the total configured maximum output power, the method includes allocating a minimum proactive power limitation to each serving cell, assigning a remaining power to one or more channels based on priority, and computing a total power assignment based on the allocating and the assigning.
Abstract:
Embodiments of computer-implemented methods, systems, computing devices, and computer-readable media are described herein for monitoring, by a mobile proxy associated with a control system of a cloud radio access network (“C-RAN”), application layer data traffic between the control system and a wireless communication device. In various embodiments, the mobile proxy may, based on the monitoring, facilitate alteration of data plane or control plane processing by the wireless communication device or a remote radio head (“RRH”) associated with the C-RAN.
Abstract:
A method is disclosed to eliminate inter-cluster interference of user equipment located at the edge of a cluster of cells. The method operates by employing fractional frequency reuse (FFR) principles on clusters or combinations of cells in a wireless neighborhood, in which base stations in the cells coordinate their operations in a scheme known as coordinated multi-point transmission (CoMP). By using the FFR principles to single out edge users of the CoMP cluster, the method mitigates interference and increases throughput for the edge users.
Abstract:
In a wireless network, simultaneous support of distributed and contiguous sub-carrier allocation may be accomplished in the same sub-frame or time zone. Techniques are described herein that can be used to allocate distributed and/or contiguous basic (physical) resource blocks to users by specifying a codebook index and parent node. Techniques are described herein that can be used to flexibly set a number of sub-channels over which a subscriber station indicates a channel quality indicator to a base station. Sub-channels may be represented as nodes and may be grouped to include a parent node and child nodes. By specifying a code book to use and a parent node, the channel quality indicator of the parent and children nodes can be indicated.
Abstract:
Disclosed in some examples is a method performed by a relay station, the method including receiving at a relay station a data packet transmitted from a base station to a subscriber station; receiving a non-acknowledgement (NACK) message transmitted from the subscriber station to the base station in response to the data packet; receiving resource allocation information transmitted from the base station to the subscriber station; and transmitting, in response to the received NACK message at the transmission time, the data packet to the subscriber station in a resource allocation allocated for a retransmission of the data packet from the base station to the subscriber station, wherein the resource allocation is determined from the resource allocation information.
Abstract:
A method and apparatus for wireless location tracking by a wireless device. In one embodiment of the invention, the wireless device has logic to determine the information of a plurality of specific location points and to determine the location of the wireless device based on the information of the plurality of specific location points. The specific location points are selected from a target area where the wireless device is located. By selecting the specific location points in the target area, it allows hidden Access Points (APs) or Base Stations (BSs) to be detected and measured and it increases the accuracy of the tracking of the wireless device.