Abstract:
Method of forming a deep trench capacitor are provided. The method may include forming a deep trench in a substrate; forming a metal-insulator-metal (MIM) stack within a portion of the deep trench, the MIM stack forming including forming an outer electrode by co-depositing a refractory metal and silicon into the deep trench; and filling a remaining portion of the deep trench with a semiconductor.
Abstract:
A deep trench capacitor is provided. The deep trench capacitor may include: a deep trench in a substrate, the deep trench including an lower portion having a width that is wider than a width of the rest of the deep trench; a compressive stress layer against the substrate in the lower portion; a metal-insulator-metal (MIM) stack over the compressive stress layer, the MIM stack including a node dielectric between an inner electrode and an outer electrode; and a semiconductor core within the MIM stack.
Abstract:
A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
Abstract:
A surface of a semiconductor-containing dielectric material/oxynitride/nitride is treated with a basic solution in order to provide hydroxyl group termination of the surface. A dielectric metal oxide is subsequently deposited by atomic layer deposition. The hydroxyl group termination provides a uniform surface condition that facilitates nucleation and deposition of the dielectric metal oxide, and reduces interfacial defects between the oxide and the dielectric metal oxide. Further, treatment with the basic solution removes more oxide from a surface of a silicon germanium alloy with a greater atomic concentration of germanium, thereby reducing a differential in the total thickness of the combination of the oxide and the dielectric metal oxide across surfaces with different germanium concentrations.
Abstract:
A deep trench capacitor is provided. The deep trench capacitor may include: a deep trench in a substrate, the deep trench including an lower portion having a width that is wider than a width of the rest of the deep trench; a compressive stress layer against the substrate in the lower portion; a metal-insulator-metal (MIM) stack over the compressive stress layer, the MIM stack including a node dielectric between an inner electrode and an outer electrode; and a semiconductor core within the MIM stack.
Abstract:
A trench structure that in one embodiment includes a trench present in a substrate, and a dielectric layer that is continuously present on the sidewalls and base of the trench. The dielectric layer has a dielectric constant that is greater than 30. The dielectric layer is composed of tetragonal phase hafnium oxide with silicon present in the grain boundaries of the tetragonal phase hafnium oxide in an amount ranging from 3 wt. % to 20 wt. %.
Abstract:
A trench structure that in one embodiment includes a trench present in a substrate, and a dielectric layer that is continuously present on the sidewalls and base of the trench. The dielectric layer has a dielectric constant that is greater than 30. The dielectric layer is composed of tetragonal phase hafnium oxide with silicon present in the grain boundaries of the tetragonal phase hafnium oxide in an amount ranging from 3 wt. % to 20 wt. %.