Abstract:
An impedance matching network comprises a first signal terminal configured to receive a signal from a source circuit and a second signal terminal configured to provide the signal to a load circuit. The network further comprises a series branch comprising a variable capacitive component between the first signal terminal and the second signal terminal. The variable capacitive component comprises a plurality of capacitive portions connected in series, wherein at least one of the capacitive portions comprises a switching element comprising a stack of series connected transistors. The impedance matching network also comprises a control component configured to control a capacitance of the variable capacitive component by controlling the at least one of the capacitive portions based on a predetermined algorithm.
Abstract:
A high-frequency switching circuit includes a high-frequency switching transistor, wherein a high-frequency signal-path extends via a channel-path of the high-frequency switching transistor. The high-frequency switching circuit includes a control circuit and the control circuit is configured to apply at least two different bias potentials to a substrate of the high-frequency switching transistor, depending on a control signal received by the control circuit.
Abstract:
In accordance with an embodiment, a circuit includes a first signal path coupled between an input port and an output port, and a second coupled between the input port and the output port in parallel with the first signal path. The first signal path includes a low noise amplifier (LNA) having an input node coupled to the input port, and the second signal path includes a switch coupled between the input port and the output port.
Abstract:
An impedance matching network comprises a first and a second signal terminal and a reference potential terminal. The network further comprises a first shunt branch between the first signal terminal and the reference potential terminal, the first shunt branch comprising a variable inductive element and a first capacitive element. The impedance matching network also comprises a second shunt branch between the second signal terminal and the reference potential terminal and comprising a second capacitive element. A series branch between the first signal terminal and the second signal terminal comprises a third capacitive element. Optionally, the first, second, and/or third capacitive element may be implemented as a variable capacitive element. The variable capacitive element comprises a plurality of transistors, wherein a combination of off-capacitances Coff of the transistors provide an overall capacitance of the variable capacitive element as a function of at least two independent transistor control signals.
Abstract:
In accordance with an embodiment, a directional coupler includes a coupler circuit and at least one amplifier coupled between a coupler circuit isolated port and a directional coupler isolated port and/or between a coupler circuit coupled port and a directional coupler coupled port. In various embodiments, the directional coupler is disposed over and/or in a substrate.
Abstract:
A semiconductor device includes a semiconductor substrate having a first main surface in which a recess is formed. Further, the semiconductor device includes an electrical interconnect structure which is arranged at a bottom of the recess. A semiconductor chip is located in the recess. The semiconductor chip includes a plurality of chip electrodes facing the electrical interconnect structure. Further, a plurality of electrically conducting elements is arranged in the electrical interconnect structure and electrically connected to the plurality of chip electrodes.
Abstract:
In accordance with an embodiment, a phase detector circuit includes a plurality of cascaded RF stages that each has a first RF amplifier and a second RF amplifier. The first RF amplifiers are cascaded with first RF amplifiers of successive RF stages, and the second RF amplifiers are cascaded with second RF amplifiers of successive RF stages. The phase detector further includes a first mixer having a first input coupled to an output of a first RF amplifier of a first RF stage and a second input coupled to an output of a second RF amplifier of the first RF stage, and a second mixer having a first input coupled to an output of a second RF amplifier of a second RF stage and a second input coupled to an output of a first RF amplifier of the second RF stage.
Abstract:
One aspect of the invention relates to a shielding device for shielding from electromagnetic radiation, including a shielding base element, a shielding cover element and a shielding lateral element for electrically connecting the base element to the cover element in such that a circuit part to be shielded is arranged within the shielding elements. Since at least one partial section of the shielding elements includes a semiconductor material, a shielding device can be realized completely and cost-effectively in an integrated circuit.
Abstract:
An RF switch includes series-coupled RF switch cells coupled between an RF input and ground, a transistor including a first current node coupled to a first load resistor, a second current node coupled to ground, and a control node coupled to an internal switch node, and a filter having an input coupled to the first current node of the first transistor and an output for providing a DC voltage corresponding to the RF power present at the internal switch node.
Abstract:
An integrated circuit device comprises at least one non-linear circuit. Further the integrated circuit device comprises a plurality of terminal circuits coupled to the non-linear circuit. Each terminal circuit comprises an associated terminal and an inductor coupled to the associated terminal and to the at least one non-linear circuit. A protective device for protection of a circuit, comprises an electro-static discharge protection element configured to be coupled to a circuit terminal and an inductor coupled to the electro-static discharge protection element and configured to be coupled to the circuit. The inductor has a low quality factor.