摘要:
A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon. A GaN based semiconductor layer 23 of an oxygen concentration of 5×1016 cm−3 or more provides an active layer 17 with an excellent crystal quality, and the active layer 17 is grown on the primary surface of the GaN based semiconductor layer 23.
摘要:
A group III nitride semiconductor laser device includes a laser structure, an insulating layer, an electrode and dielectric multilayers. The laser structure includes a semiconductor region on a semi-polar primary surface of a hexagonal group III nitride semiconductor support base. The dielectric multilayers are on first and second end-faces for the laser cavity. The c-axis of the group III nitride tilts by an angle ALPHA from the normal axis of the primary surface in the waveguide axis direction from the first end-face to the second end-faces. A pad electrode has first to third portions provided on the first to third regions of the semiconductor regions, respectively. An ohmic electrode is in contact with the third region through an opening of the insulating layer. The first portion has a first arm, which extends to the first end-face edge. The third portion is away from the first end-face edge.
摘要:
In the method of fabricating a nitride-based semiconductor optical device by metal-organic chemical vapor deposition, a barrier layer is grown at a first temperature while supplying a gallium source to a reactor. The barrier layer comprises a first gallium nitride-based semiconductor. After the growth of the barrier layer, a nitrogen material and an indium material are supplied to the reactor without supply of the gallium source to perform a preflow of indium. Immediately after the preflow, a well layer is grown on the barrier layer at a second temperature while supplying an indium source and the gallium source to the reactor. The well layer comprises InGaN, and the second temperature is lower than the first temperature. The gallium source and the indium source are supplied to the reactor during plural first periods of the step of growing the well layer to grow plural InGaN layers, respectively. The indium material is supplied to the reactor without supply of the gallium source during the second period of the step of growing the well layer. The second period is between the first periods. The well layer comprises the plural InGaN layers.
摘要:
A III-nitride semiconductor optical device has a support base comprised of a III-nitride semiconductor, an n-type gallium nitride based semiconductor layer, a p-type gallium nitride based semiconductor layer, and an active layer. The support base has a primary surface at an angle with respect to a reference plane perpendicular to a reference axis extending in a c-axis direction of the III-nitride semiconductor. The n-type gallium nitride based semiconductor layer is provided over the primary surface of the support base. The p-type gallium nitride based semiconductor layer is doped with magnesium and is provided over the primary surface of the support base. The active layer is provided between the n-type gallium nitride based semiconductor layer and the p-type gallium nitride based semiconductor layer over the primary surface of the support base. The angle is in the range of not less than 40° and not more than 140°. The primary surface demonstrates either one of semipolar nature and nonpolar nature. The p-type gallium nitride based semiconductor layer contains carbon as a p-type dopant. A carbon concentration of the p-type gallium nitride based semiconductor layer is not less than 2×1016 cm−3, and the carbon concentration of the p-type gallium nitride based semiconductor layer is not more than 1×1019 cm−3.
摘要:
In the method of fabricating a quantum well structure which includes a well layer and a barrier layer, the well layer is grown at a first temperature on a sapphire substrate. The well layer comprises a group III nitride semiconductor which contains indium as a constituent. An intermediate layer is grown on the InGaN well layer while monotonically increasing the sapphire substrate temperature from the first temperature. The group III nitride semiconductor of the intermediate layer has a band gap energy larger than the band gap energy of the InGaN well layer, and a thickness of the intermediate layer is greater than 1 nm and less than 3 nm in thickness. The barrier layer is grown on the intermediate layer at a second temperature higher than the first temperature. The barrier layer comprising a group III nitride semiconductor and the group III nitride semiconductor of the barrier layer has a band gap energy larger than the band gap energy of the well layer.
摘要:
A GaN-based semiconductor light emitting device 11a includes a substrate 13 composed of a GaN-based semiconductor having a primary surface 13a tilting from the c-plane toward the m-axis at a tilt angle α of more than or equal to 63 degrees and less than 80 degrees, a GaN-based semiconductor epitaxial region 15, an active layer 17, an electron blocking layer 27, and a contact layer 29. The active layer 17 is composed of a GaN-based semiconductor containing indium. The substrate 13 has a dislocation density of 1×107 cm−2 or less. In the GaN-based semiconductor light emitting device 11a provided with the active layer containing indium, a decrease in quantum efficiency under high current injection can be moderated.
摘要翻译:GaN基半导体发光器件11a包括由GaN基半导体构成的衬底13,该GaN基半导体具有从c面朝向m轴倾斜角度α大于或等于63度的主表面13a;以及 低于80度的GaN基半导体外延区域15,有源层17,电子阻挡层27和接触层29.有源层17由包含铟的GaN基半导体构成。 基板13的位错密度为1×10 7 cm -2以下。 在具有含有铟的有源层的GaN系半导体发光元件11a中,能够缓和高电流注入时的量子效率的降低。
摘要:
An object is to provide a nitride-based semiconductor light emitting device capable of preventing a Schottky barrier from being formed at an interface between a contact layer and an electrode. LD 1 is provided as a nitride-based semiconductor light emitting device provided with a GaN substrate 3, a hexagonal GaN-based semiconductor region 5 provided on a primary surface S1 of the GaN substrate 3 and including a light emitting layer 11, and a p-electrode 21 provided on the GaN-based semiconductor region 5 and comprised of metal. The GaN-based semiconductor region 5 includes a contact layer 17 involving strain, the contact layer 17 is in contact with the p-electrode, the primary surface S1 extends along a reference plane S5 inclined at a predetermined inclination angle θ from a plane perpendicular to the c-axis direction of the GaN substrate 3, and the inclination angle θ is either in the range of more than 40° and less than 90° or in the range of not less than 150° and less than 180°. The GaN-based semiconductor region 5 is lattice-matched with the GaN substrate 3.
摘要:
A GaN-based semiconductor light emitting device 11a includes a substrate 13 composed of a GaN-based semiconductor having a primary surface 13a tilting from the c-plane toward the m-axis at a tilt angle α of more than or equal to 63 degrees and less than 80 degrees, a GaN-based semiconductor epitaxial region 15, an active layer 17, an electron blocking layer 27, and a contact layer 29. The active layer 17 is composed of a GaN-based semiconductor containing indium. The substrate 13 has a dislocation density of 1×107 cm−2 or less. In the GaN-based semiconductor light emitting device 11a provided with the active layer containing indium, a decrease in quantum efficiency under high current injection can be moderated.
摘要翻译:GaN基半导体发光器件11a包括由具有从c面朝向m轴倾斜角度大于或等于63度的主表面13a的GaN基半导体构成的衬底13, 低于80度的GaN基半导体外延区域15,有源层17,电子阻挡层27和接触层29.有源层17由包含铟的GaN基半导体构成。 基板13的位错密度为1×10 7 cm -2以下。 在具有含有铟的有源层的GaN系半导体发光元件11a中,能够缓和高电流注入时的量子效率的降低。
摘要:
A nitride semiconductor laser includes an electrically conductive support substrate with a primary surface of a gallium nitride based semiconductor, an active layer provided above the primary surface, and a p-type cladding region provided above the primary surface. The primary surface is inclined relative to a reference plane perpendicular to a reference axis extending in a direction of the c-axis of the gallium nitride based semiconductor. The p-type cladding region includes first and second p-type Group III nitride semiconductor layers. The first p-type semiconductor layer comprises an InAlGaN layer including built-in anisotropic strain. The second p-type semiconductor layer comprises semiconductor different from material of the InAlGaN layer. The first nitride semiconductor layer is provided between the second p-type semiconductor layer and the active layer. The second p-type semiconductor layer has a resistivity lower than that of the first p-type semiconductor layer.
摘要:
A Group III nitride semiconductor laser device includes a laser structure including a support substrate with a semipolar primary surface of a hexagonal Group III nitride semiconductor, and a semiconductor region thereon, and an electrode, provided on the semiconductor region, extending in a direction of a waveguide axis in the laser device. The c-axis of the nitride semiconductor is inclined at an angle ALPHA relative to a normal axis to the semipolar surface toward the waveguide axis direction. The laser structure includes first and second fractured faces intersecting with the waveguide axis. A laser cavity of the laser device includes the first and second fractured faces extending from edges of first and second faces. The first fractured face includes a step provided at an end face of an InGaN layer of the semiconductor region and extending in a direction from one side face to the other of the laser device.