摘要:
The present invention provides a method for removing charged defects from a material stack including a high k gate dielectric and a metal contact such that the final gate stack, which is useful in forming a pFET device, has a threshold voltage substantially within the silicon band gap and good carrier mobility. Specifically, the present invention provides a re-oxidation procedure that will restore the high k dielectric of a pFET device to its initial, low-defect state. It was unexpectedly determined that by exposing a material stack including a high k gate dielectric and a metal to dilute oxygen at low temperatures will substantially eliminate oxygen vacancies, resorting the device threshold to its proper value. Furthermore, it was determined that if dilute oxygen is used, it is possible to avoid undue oxidation of the underlying semiconductor substrate which would have a deleterious effect on the capacitance of the final metal-containing gate stack. The present invention also provides a semiconductor structure that includes at least one gate stack that has a threshold voltage within a control range and has good carrier mobility.
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes processing an oxide to have a crystalline arrangement, and depositing an amorphous semiconductor layer on the oxide by one of evaporation and chemical vapor deposition (CVD).
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
摘要:
The present invention provides a method for removing charged defects from a material stack including a high k gate dielectric and a metal contact such that the final gate stack, which is useful in forming a pFET device, has a threshold voltage substantially within the silicon band gap and good carrier mobility. Specifically, the present invention provides a re-oxidation procedure that will restore the high k dielectric of a pFET device to its initial, low-defect state. It was unexpectedly determined that by exposing a material stack including a high k gate dielectric and a metal to dilute oxygen at low temperatures will substantially eliminate oxygen vacancies, resorting the device threshold to its proper value. Furthermore, it was determined that if dilute oxygen is used, it is possible to avoid undue oxidation of the underlying semiconductor substrate which would have a deleterious effect on the capacitance of the final metal-containing gate stack. The present invention also provides a semiconductor structure that includes at least one gate stack that has a threshold voltage within a control range and has good carrier mobility.
摘要:
Techniques for providing high-capacity, re-workable connections in concentrated photovoltaic devices are provided. In one aspect, a lead frame package for a photovoltaic device is provided that includes a beam shield; and one or more lead frame connectors affixed to the beam shield, wherein the lead frame connectors are configured to provide connection to the photovoltaic device when the photovoltaic device is assembled to the lead frame package. A photovoltaic apparatus is also provided that includes a lead frame package assembled to a photovoltaic device. The lead frame package includes a beam shield and one or more lead frame connectors affixed to the beam shield, wherein the lead frame connectors are configured to provide connection to the photovoltaic device.
摘要:
A memory cell includes at least one heater, and at least two leads and a heating element which is formed between at least two leads, a material of the heating element being different from a material of at least two leads such that a location of a hot spot in the heater is controllable based on a polarity of current in the heater and at least one storage medium formed adjacent to at least one heater.
摘要:
Embodiments relate to a solar cell apparatus including a molybdenum (Mo) contact layer and an annealed absorber layer including zinc and sulfur directly adjacent to the Mo contact layer. The apparatus has no molybdenum disulfide (MoS2) layer located between the Mo contact layer and the annealed absorber layer. The apparatus further includes a buffer layer adjacent to the annealed absorber layer.