Abstract:
Semiconductor devices including a dual-sided redistribution structure and having low-warpage across all temperatures and associated systems and methods are disclosed herein. In one embodiment, a semiconductor device includes a first semiconductor die electrically coupled to a first side of a redistribution structure and a second semiconductor die electrically coupled to a second side of the redistribution structure opposite the first side. The semiconductor device also includes a first molded material on the first side, a second molded material on the second side, and conductive columns electrically coupled to the first side and extending through the first molded material. The first and second molded materials can have the same volume and/or coefficients of thermal expansion to inhibit warpage of the semiconductor device.
Abstract:
A semiconductor device includes a substrate including a substrate top surface; interconnects connected to the substrate and extending above the substrate top surface; a die attached over the substrate, wherein the die includes a die bottom surface that connects to the interconnects for electrically coupling the die and the substrate; and a metal enclosure directly contacting and vertically extending between the substrate top surface and the die bottom surface, wherein the metal enclosure peripherally surrounds the interconnects.
Abstract:
Microfeature workpieces having interconnects and conductive backplanes and associated systems and methods are disclosed herein. One such device includes a semiconductor substrate having integrated circuitry and terminals electrically coupled to the integrated circuitry. The device also includes electrically conductive interconnects extending through at least a portion of the semiconductor substrate and electrically coupled to corresponding terminals. The device further includes a conductive backplane assembly having a conductive layer at a back side of the semiconductor substrate. One or more of the interconnects are electrically coupled to the conductive layer at the back side of the semiconductor substrate.
Abstract:
The present invention relates to methods for forming through-wafer interconnects in semiconductor substrates and the resulting structures. In one embodiment, a method for forming a through-wafer interconnect includes providing a substrate having a pad on a surface thereof, depositing a passivation layer over the pad and the surface of the substrate, and forming an aperture through the passivation layer and the pad using a substantially continuous process. An insulative layer is deposited in the aperture followed by a conductive layer and a conductive fill. In another embodiment of the invention, a semiconductor device is formed including a first interconnect structure that extends through a conductive pad and is electrically coupled with the conductive pad while a second interconnect structure is formed through another conductive pad while being electrically isolated therefrom. Semiconductor devices and assemblies produced with the methods are also disclosed.
Abstract:
Semiconductor device packages and associated assemblies are disclosed herein. In some embodiments, the semiconductor device package includes a substrate having a first side and a second side opposite the first side, a first metallization layer positioned at the first side of the substrate, and a second metallization layer in the substrate and electrically coupled to the first metallization layer. The semiconductor device package further includes a metal bump electrically coupled to the first metallization layer and a divot formed at the second side of the substrate and aligned with the metal bump. The divot exposes a portion of the second metallization layer and enables the portion to electrically couple to another semiconductor device package.
Abstract:
A thermocompression bonding (TCB) apparatus can include a wall having a height measured in a first direction and configured to be positioned between a first pressing surface and a second pressing surface of a semiconductor bonding apparatus. The apparatus can include a cavity at least partially surrounded by the wall, the cavity sized to receive a semiconductor substrate and a stack of semiconductor dies positioned between the semiconductor substrate and the first pressing surface, the stack of semiconductor dies and semiconductor substrate having a combined unpressed stack height as measured in the first direction. In some embodiments, the unpressed stack height is greater than the height of the wall, and the wall is configured to be contacted by the first pressing surface to limit movement of the first pressing surface toward the second pressing surface during a semiconductor bonding process.
Abstract:
Semiconductor devices including a dual-sided redistribution structure and having low-warpage across all temperatures and associated systems and methods are disclosed herein. In one embodiment, a semiconductor device includes a first semiconductor die electrically coupled to a first side of a redistribution structure and a second semiconductor die electrically coupled to a second side of the redistribution structure opposite the first side. The semiconductor device also includes a first molded material on the first side, a second molded material on the second side, and conductive columns electrically coupled to the first side and extending through the first molded material. The first and second molded materials can have the same volume and/or coefficients of thermal expansion to inhibit warpage of the semiconductor device.
Abstract:
A thermocompression bonding (TCB) apparatus can include a wall having a height measured in a first direction and configured to be positioned between a first pressing surface and a second pressing surface of a semiconductor bonding apparatus. The apparatus can include a cavity at least partially surrounded by the wall, the cavity sized to receive a semiconductor substrate and a stack of semiconductor dies positioned between the semiconductor substrate and the first pressing surface, the stack of semiconductor dies and semiconductor substrate having a combined unpressed stack height as measured in the first direction. In some embodiments, the unpressed stack height is greater than the height of the wall, and the wall is configured to be contacted by the first pressing surface to limit movement of the first pressing surface toward the second pressing surface during a semiconductor bonding process.
Abstract:
Semiconductor devices having one or more vias filled with a transparent and electrically conductive material are disclosed herein. In one embodiment, a semiconductor device includes a first semiconductor die stacked over a second semiconductor die. The first semiconductor die can include at least one via that is axially aligned with a corresponding via of the second semiconductor die. The vias of the first and second semiconductor dies can be filled with a transparent and electrically conductive material that both electrically and optically couples the first and second semiconductor dies.
Abstract:
A solder removal apparatus is provided. The solder removal apparatus comprises a plurality of solder-interfacing protrusions extending from a body by a length. Each of the plurality of solder-interfacing protrusions is configured to remove a corresponding one of a plurality of solder features from a semiconductor device, where each of the plurality of solder features has a height and an amount of solder material.