Abstract:
A system and method to defragment a memory is disclosed. In a particular embodiment, a method includes loading data stored at a first physical memory address of a memory from the memory into a cache line of a data cache. The first physical memory address is mapped to a first virtual memory address. The method further includes initiating modification, at the data cache, of lookup information associated with the first virtual memory address so that the first virtual memory address corresponds to a second physical memory address of the memory. The method also includes modifying, at the data cache, information associated with the cache line to indicate that the cache line corresponds to the second physical memory address instead of the first physical memory address.
Abstract:
Systems and methods for integrated magnetoresistive random access memory (MRAM) modules. An integrated circuit includes a processor without a last level cache integrated on a first chip a MRAM module comprising a MRAM last level cache and a MRAM main memory integrated on a second chip, wherein the MRAM module is a unified structure fabricated as monolithic package or a plurality of packages. The second package further includes memory controller logic. A simplified interface structure is configured to couple the first and the second package. The MRAM module is designed for high speed, high data retention, aggressive prefetching between the MRAM last level cache and the MRAM main memory, improved page handling, and improved seal ability.
Abstract:
A method includes generating error detection information associated with data to be stored at a cache in response to determining that the data is clean. The method also includes storing the clean data at a first region of the cache. The method further includes generating error correction information associated with data to be stored at the cache in response to determining that the data is dirty. The method also includes storing the dirty data at a second region of the cache.
Abstract:
A particular method includes receiving, from a processor, a first memory access request at a memory device. The method also includes processing the first memory access request based on a timing parameter of the memory device. The method further includes receiving, from the processor, a second memory access request at the memory device. The method also includes modifying a timing parameter of the memory device based on addresses identified by the first memory access request and the second memory access request to produce a modified timing parameter. The method further includes processing the second memory access request based on the modified timing parameter.
Abstract:
An integrated circuit package is disclosed that includes a first-pitch die and a second-pitch die. The second-pitch die interconnects to the second-pitch substrate through second-pitch substrates. The first-pitch die interconnects through first-pitch interconnects to an interposer adapter. The pitch of the first-pitch interconnects is too fine for the second-pitch substrate. But the interposer adapter interconnects through second-pitch interconnects to the second-pitch substrate and includes through substrate vias so that I/O signaling between the first-pitch die and the second-pitch die can be conducted through the second-pitch substrate and through the through substrate vias in the interposer adapter.
Abstract:
A method includes sending a first signal from a memory device to a memory controller. The first signal indicates to the memory controller that particular memory cells of the memory device are to be refreshed by the memory device.
Abstract:
A hybrid cache includes a static random access memory (SRAM) portion and a resistive random access memory portion. Cache lines of the hybrid cache are configured to include both SRAM macros and resistive random access memory macros. The hybrid cache is configured so that the SRAM macros are accessed before the resistive random memory macros in each cache access cycle. While SRAM macros are accessed, the slower resistive random access memory reach a data access ready state.
Abstract:
A resistance-based memory includes a two-diode access device. In a particular embodiment, a method includes biasing a bit line with a first voltage. The method further includes biasing the sense line with a second voltage. Biasing the bit line and biasing the sense line generates a current through a resistance-based memory element and through one of a first diode and a second diode. A cathode of the first diode is coupled to the bit line and an anode of the second diode is coupled to the sense line.
Abstract:
A particular method of making a stacked multi-die semiconductor device includes forming a stack of at least two dies. Each die includes a chip identifier structure that includes a first set of at least two through vias that are each hard wired to a set of external electrical contacts. Each die further includes chip identifier selection logic coupled to the chip identifier structure. Each die further includes a chip select structure that includes a second set of at least two through vias coupled to the chip identifier selection logic. The method further includes coupling each external electrical contact to a voltage source or ground. Each of the first set of through vias has a pad that is coupled to an adjacent through via and each of the second set of through vias is coupled to its own respective pad.
Abstract:
A particular device includes a first die that includes a portion of a chip identifier structure, the portion including a first set of at least two through vias that are each connected to a corresponding external electrical contact of a first set of external electrical contacts. Each of the first set of through vias has a pad configured to be coupled to an adjacent through via of a second die in the chip identifier structure. Each external electrical contact of the first set of external electrical contacts is configured to transmit a chip select signal. The first die further includes at least a portion of a chip communication structure including a second set of at least one through via. Each via of the second set is connected to one external electrical contact of a second set of external electrical contacts.