Abstract:
Passive device assembly for accurate ground plane control is disclosed. A passive device assembly includes a device substrate conductively coupled to a ground plane separation control substrate. A passive device disposed on a lower surface of the device substrate is separated from an embedded ground plane mounted on a lower surface of the ground plane separation control substrate by a separation distance. The separation distance is accurately controlled to minimize undesirable interference that may occur to the passive device. The separation distance is provided inside the passive device assembly. Conductive mounting pads are disposed on the lower surface of the ground plane separation control substrate to support accurate alignment of the passive device assembly on a circuit board. By providing sufficient separation distance inside the passive device assembly, the passive device assembly can be precisely mounted onto any circuit board regardless of specific design and layout of the circuit board.
Abstract:
An integrated circuit (IC) includes a glass substrate and a buried oxide layer. The IC additionally includes a first semiconductor device coupled to the glass substrate. The first semiconductor device includes a first gate and a first portion of a semiconductive layer coupled to the buried oxide layer. The first gate is located between the glass substrate and the first portion of the semiconductive layer and between the glass substrate and the buried oxide layer. The IC additionally includes a second semiconductor device coupled to the glass substrate. The second semiconductor device includes a second gate and a second portion of the semiconductive layer. The second gate is located between the glass substrate and the second portion of the semiconductive layer. The first portion is discontinuous from the second portion.
Abstract:
An integrated circuit device includes a substrate. The integrated circuit device also includes a first conductive stack including a back-end-of-line (BEOL) conductive layer at a first elevation with reference to the substrate. The integrated circuit device also includes a second conductive stack including the BEOL conductive layer at a second elevation with reference to the substrate. The second elevation differs from the first elevation.
Abstract:
A three-dimensional (3D) orthogonal inductor pair is embedded in and supported by a substrate, and has a first inductor having a first coil that winds around a first winding axis and a second inductor having a second coil that winds around a second winding axis. The second winding axis is orthogonal to the first winding axis. The second winding axis intersects the first winding axis at an intersection point that is within the substrate.
Abstract:
Some novel features pertain to an integrated device package (e.g., die package) that includes a package substrate, a die, an encapsulation layer and a first set of metal layers. The package substrate includes a first surface and a second surface. The die is coupled to the first surface of the package substrate. The encapsulation layer encapsulates the die. The first set of metal layers is coupled to a first exterior surface of the encapsulation layer. In some implementations, the first set of metal layers is configured to operate as a die-to-wire connector of the integrated device package. In some implementations, the integrated device package includes a second set of metal layers coupled to the second surface of the package substrate. In some implementations, the integrated device package includes a second set of metal layers coupled to a second exterior surface of the encapsulation layer.
Abstract:
An integrated radio frequency (RF) circuit combines complementary features of passive devices and acoustic filters and includes a first die, a second die, and a third die. The first die includes a substrate having one or more passive devices. The second die includes a first acoustic filter. The second die is stacked and coupled to a first surface of the first die. The third die includes a second acoustic filter. The third die is stacked and coupled to a second surface opposite the first surface of the first die.
Abstract:
A device includes a glass substrate and a capacitor. The capacitor includes a first metal coupled to a first electrode, a dielectric structure, and a via structure comprising a second electrode of the capacitor. The first metal structure is separated from the via structure by the dielectric structure.
Abstract:
A substrate includes a first dielectric layer, a magnetic core at least partially in the first dielectric layer, where the magnetic core comprises a first non-horizontal thin film magnetic (TFM) layer. The substrate also includes a first inductor that includes a plurality of first interconnects, where the first inductor is positioned in the substrate to at least partially surround the magnetic core. The magnetic core may further include a second non-horizontal thin film magnetic (TFM) layer. The magnetic core may further include a core layer. The magnetic core may further include a third thin film magnetic (TFM) layer, and a fourth thin film magnetic (TFM) layer that is substantially parallel to the third thin film magnetic (TFM) layer.
Abstract:
In conventional device packages, separate standalone inductors are provided and mounted on an interposer substrate along with a die. Separate inductors reduce integration density, decrease flexibility, increase footprint, and generally increase costs. To address such disadvantages, it is proposed to provide a part of an inductor in a substrate below a die. The proposed stacked substrate inductor may include a first inductor in a first substrate, a second inductor in a second a second substrate stacked on the first substrate, and an inductor interconnect coupling the first and second inductors. The core regions of the first and second inductors may overlap with each other at least partially. The proposed stacked substrate inductor may enhance integration density, increase flexibility, decrease footprint, and/or reduce costs.
Abstract:
Ground shielding is achieved by a conductor shield having conductive surfaces that immediately surround individual chips within a multichip module or device, such as a multichip module or device with flip-chip (FC) bumps. Intra-module shielding between individual chips within the multichip module or device is achieved by electromagnetic or radio-signal (RF) isolation provided by the surfaces of the conductor shield immediately surrounding each of the chips. The conductor shield is directly connected to one or more grounded conductor portions of a substrate or interposer to ensure reliable grounding.