Abstract:
In a conventional memory subsystem, a memory controller issues explicit refresh commands to a DRAM memory device to maintain integrity of the data stored in the memory device when the memory device is in an auto-refresh mode. A significant amount of power may be consumed to carry out the refresh. To address this and other issues, it is proposed to allow a partial refresh in the auto-refresh mode in which the refreshing operation may be skipped for a subset of the memory cells. Through such selective refresh skipping, the power consumed for auto-refreshes may be reduced. Operating system kernels and memory drivers may be configured to determine areas of memory for which the refreshing operation can be skipped.
Abstract:
Systems and methods are disclosed for reducing memory power consumption via pre-filled dynamic random access memory (DRAM) values. One embodiment is a method for providing DRAM values. A fill request is received from an executing program to fill an allocated portion of the DRAM with a predetermined pattern of values. The predetermined pattern of values is stored in a fill value memory residing in the DRAM. A fill command is sent to the DRAM. In response to the fill command, a plurality of sense amp latches are connected to the fill value memory to update the corresponding sense amp latch bits with the predetermined pattern of values stored in the fill value memory.
Abstract:
Systems, methods, and computer programs are disclosed for providing power-efficient file system operation to a non-volatile block memory. An exemplary embodiment of a system comprises a non-volatile block memory having a file system, a dynamic random access memory (DRAM), and a system on chip (SoC). The SoC comprises a central processing unit (CPU), one or more non-core processors, a DRAM controller, a data interface coupled to an off-chip processor, and a multi-host storage controller. The CPU allocates a storage buffer in the non-volatile block memory. The multi-host storage controller comprises a virtualized client interface for providing the non-core and off-chip processors with direct read/write file system access using the allocated storage buffer while the CPU and the DRAM are in a low power state.
Abstract:
Systems, methods, and computer programs are disclosed for providing coincident memory bank access. One embodiment is a memory device comprising a first bank, a second bank, a first bank resource, and a second bank resource. The first bank has a first set of bitlines for accessing a first set of rows in a first memory cell array. The second bank has a second set of bitlines for accessing a second set of rows in a second memory cell array. The first bank resource and the second bank resource are selectively connected to the first set of bitlines or the second set of bitlines via a cross-connect switch.
Abstract:
Systems and methods are disclosed for implementing error correction control regions (ECC) in a memory device without the need to ECC protect the entire memory device. An exemplary method comprises defining one or more ECC regions in a memory device, the memory device coupled to a system on a chip (SoC). An ECC block is provided on the SoC, the ECC block in communication with the one or more ECC regions in the memory device. A determination is made with the ECC block whether to store data in a first of the one or more ECC regions. Responsive to the determination ECC bits are generating for, and interleaved with, the received data and interleaved ECC bits and data are caused to be written to the first ECC region. Otherwise, received data is sent to a non-ECC region of the memory device.
Abstract:
Systems, methods, and computer programs for providing row tamper protection in a multi-bank memory cell array. One method comprises monitoring row activation activity for each of a plurality of banks in a multi-bank memory cell array. In response to monitoring the row activation activity, a row activation counter table is stored in a memory. The row activation counter table comprises a plurality of row address entries, each row address entry having a corresponding row activation counter. In response to detecting one of the plurality of row activation counters has exceeded a threshold indicating suspicious row tampering, the corresponding row address entry associated with the row activation counter exceeding the threshold is determined. A refresh operation is performed on one or more rows adjacent to the row address having the row activation counter exceeding the threshold.
Abstract:
Systems, methods, and computer programs are disclosed for resolving dynamic random access memory (DRAM) defects. One embodiment is a system comprising a dynamic random access memory (DRAM) system electrically coupled to a system on chip (SoC). The SoC comprises a cache and a cache controller. The cache controller is configured to store corrected data for a failed physical codeword address associated with the DRAM in the cache and provide further access to the failed physical codeword address from the cache instead of the DRAM system.
Abstract:
Various embodiments of systems and methods are disclosed for reducing volatile memory standby power in a portable computing device. One such method involves receiving a request for a volatile memory device to enter a standby power mode. One or more compression parameters are determined for compressing content stored in a plurality of banks of the volatile memory device. The stored content is compressed based on the one or more compression parameters to free-up at least one of the plurality of banks. The method disables self-refresh of at least a portion of one or more of the plurality of banks freed-up by the compression during the standby power mode.
Abstract:
A system and method of refreshing dynamic random access memory (DRAM) are disclosed. A device includes a DRAM, a bus, and a system-on-chip (SOC) coupled via the bus to the DRAM. The SOC is configured to refresh the DRAM at a particular refresh rate based on a temperature of the DRAM and based on calibration data determined based on one or more calibration tests performed while the SOC is coupled to the DRAM.
Abstract:
Efficient techniques using a multi-port shared non-volatile memory are described that reduce latency in memory accesses from dedicated function specific processors, such as a modem control processor. The modem processor preempts a host processor that is accessing data from a multi-port shared non-volatile memory flash device allowing the modem processor to quickly access data in the flash device. The preemption process uses a doorbell interrupt initiated by a processor that seeks access and interrupts the processor being preempted. After preemption, the host processor may resume or restart the data access. Access control by the processors utilizes a hardware semaphore atomic control mechanism. Power control of the shared non-volatile memory modules includes at least one inactivity timer to indicate when a supply voltage to the shared non-volatile memory modules can be safely reduced or turned off. Power may be restarted by any of the processors sharing the memory, allowing fast access to the data.