Abstract:
A phase change memory cell includes first and second electrodes electrically coupled by a phase change element. At least a section of the phase change element comprises a higher reset transition temperature portion and a lower reset transition temperature portion. The lower reset transition temperature portion comprises a phase change region which can be transitioned, by the passage of electrical current therethrough, from generally crystalline to generally amorphous states at a lower temperature than the higher reset transition temperature portion. The phase change element may comprise an outer, generally tubular, higher reset transition temperature portion surrounding an inner, lower reset transition temperature portion.
Abstract:
A memory device includes a driver comprising a pn-junction in the form of a multilayer stack including a first doped semiconductor region having a first conductivity type, and a second doped semiconductor plug having a second conductivity type opposite the first conductivity type, the first and second doped semiconductors defining a pn junction therebetween, in which the first doped semiconductor region is formed in a single-crystalline semiconductor, and the second doped semiconductor region includes a polycrystalline semiconductor. Also, a method for making a memory device includes forming a first doped semiconductor region of a first conductivity type in a single-crystal semiconductor, such as on a semiconductor wafer; and forming a second doped polycrystalline semiconductor region of a second conductivity type opposite the first conductivity type, defining a pn junction between the first and second regions.
Abstract:
A memory device comprising a first electrode having a top side, a second electrode having a top side and an insulating member between the first electrode and the second electrode. The insulating member has a thickness between the first and second electrodes near the top side of the first electrode and the top side of the second electrode. A bridge of memory material crosses the insulating member, and defines an inter-electrode path between the first and second electrodes across the insulating member. An array of such memory cells is provided. In the array, a plurality of electrode members and insulating members therebetween comprise an electrode layer on an integrated circuit. The bridges of memory material have sub-lithographic dimensions.
Abstract:
Memory devices are described along with manufacturing methods. A memory device as described herein includes a bottom electrode and a first phase change layer comprising a first phase change material on the bottom electrode. A resistive heater comprising a heater material is on the first phase change material. A second phase change layer comprising a second phase change material is on the resistive heater, and a top electrode is on the second phase change layer. The heater material has a resistivity greater than the most highly resistive states of the first and second phase change materials.
Abstract:
A process in the manufacturing of a resistor random access memory with a confined melting area for switching a phase change in the programmable resistive memory. The process initially formed a pillar comprising a substrate body, a first conductive material overlying the substrate body, a programmable resistive memory material overlying the first conductive material, a high selective material overlying the programmable resistive memory material, and a silicon nitride material overlying the high selective material. The high selective material in the pillar is isotropically etched on both sides of the high selective material to create a void on each side of the high selective material with a reduced length. A programmable resistive memory material is deposited in a confined area previously occupied by the reduced length of the poly, and the programmable resistive memory material is deposited into an area previously occupied by the silicon nitride material.
Abstract:
A memory device comprising a access circuits, an electrode layer over the access circuits, an array of phase change memory bridges over the electrode layer, and a plurality of bit lines over the array of phase change memory bridges. The electrode layer includes electrode pairs. Electrode pairs include a first electrode having a top side, a second electrode having a top side and an insulating member between the first electrode and the second electrode. A bridge of memory material crosses the insulating member, and defines an inter-electrode path between the first and second electrodes across the insulating member.
Abstract:
A memory device comprising a access circuits, an electrode layer over the access circuits, an array of phase change memory bridges over the electrode layer, and a plurality of bit lines over the array of phase change memory bridges. The electrode layer includes electrode pairs. Electrode pairs include a first electrode having a top side, a second electrode having a top side and an insulating member between the first electrode and the second electrode. A bridge of memory material crosses the insulating member, and defines an inter-electrode path between the first and second electrodes across the insulating member.
Abstract:
An integrated circuit memory device, including a memory circuit and a peripheral circuit, is described which is suitable for low cost manufacturing. The memory circuit and peripheral circuit for the device are implemented in different layers of a stacked structure. The memory circuit layer and the peripheral circuit layer include complementary interconnect surfaces, which upon mating together establish the electrical interconnection between the memory circuit and the peripheral circuit. The memory circuit layer and the peripheral circuit layer can be formed separately using different processes on different substrates in different fabrication lines. This enables the use of independent fabrication process technologies, one arranged for the memory array, and another arranged for the supporting peripheral circuit. The separate circuitry can then be stacked and bonded together.
Abstract:
A semiconductor structure and a manufacturing method and an operating method of the same are provided. The semiconductor structure includes a substrate, a main body structure, a first dielectric layer, a first conductive strip, a second conductive strip, a second dielectric layer, and a conductive structure. The main body structure is formed on the substrate, and the first dielectric layer is formed on the substrate and surrounding two sidewalls and a top portion of the main body structure. The first conductive strip and the second conductive strip are formed on two sidewalls of the first dielectric layer, respectively. The second dielectric layer is formed on the first dielectric layer, the first conductive strip, and the second conductive strip. The conductive structure is formed on the second dielectric layer.
Abstract:
A chip stack structure and a manufacturing method thereof are provided. The chip stack structure comprises a first chip, a second chip and a vertical conductive line. The second chip is disposed above the first chip. The vertical conductive line is electrically connected to the first chip and the second chip. The vertical conductive line is disposed at the outside of a projection area of the first chip and the second chip.