Abstract:
The present disclosure relates to an integrated chip having an integrated bio-sensor having horizontal and vertical sensing surfaces. In some embodiments, the integrated chip has a sensing device disposed within a semiconductor substrate. A back-end-of the line (BEOL) metallization stack with a plurality of metal interconnect layers electrically coupled to the sensing device is arranged within an inter-level dielectric (ILD) layer overlying the semiconductor substrate. A sensing well is located within a top surface of the ILD layer. The sensing well has a horizontal sensing surface extending along a top surface of a first one of the plurality of metal interconnect layers and a vertical sensing surface extending along a sidewall of a second one of the plurality of metal interconnect layers overlying the first one of the plurality of metal interconnect layers. The use of both horizontal and vertical sensing surfaces enables more accurate sensing.
Abstract:
A microelectromechanical systems (MEMS) package includes a MEMS device and an integrated circuit (IC) device connected by a through silicon via (TSV). A conductive MEMS structure is arranged in a dielectric layer and includes a membrane region extending across a first volume arranged in the dielectric layer. A first substrate is bonded to a second substrate through the dielectric layer, where the MEMS device includes the second substrate. The TSV extends through the second substrate to electrically couple the MEMS device to the IC device. A third substrate is bonded to the second substrate to define a second volume between the second substrate and the third substrate, where the IC device includes the first or third substrate. A method for manufacturing the MEMS package is also provided.
Abstract:
The present disclosure relates to method of forming a MEMS device that mitigates the above mentioned difficulties. In some embodiments, the present disclosure relates to a method of forming a MEMS device, which forms one or more cavities within a first side of a carrier substrate. The first side of the carrier substrate is then bonded to a dielectric layer disposed on a micro-electromechanical system (MEMS) substrate, and the MEMS substrate is subsequently patterned to define a soft mechanical structure over the one or more cavities. The dielectric layer is then selectively removed, using a dry etching process, to release the one or more soft mechanical structures. A CMOS substrate is bonded to a second side of the MEMS substrate, by way of a bonding structure disposed between the CMOS substrate and the MEMS substrate, using a low-temperature bonding process.
Abstract:
The present disclosure relates to a method of forming a plurality of MEMs device having a plurality of cavities with different pressures on a wafer package system, and an associated apparatus. In some embodiments, the method is performed by providing a work-piece having a plurality of microelectromechanical system (MEMs) devices. A cap wafer is bonded onto the work-piece in a first ambient environment having a first pressure. The bonding forms a plurality of cavities abutting the plurality of MEMs devices, which are held at the first pressure. One or more openings are formed in one or more of the plurality of cavities leading to a gas flow path that could be held at a pressure level different from the first pressure. The one or more openings in the one or more of the plurality of cavities are then sealed in a different ambient environment having a different pressure, thereby causing the one or more of the plurality of cavities to be held at the different pressure.
Abstract:
Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
Abstract:
The present disclosure relates to a method of forming an integrated chip structure. The method includes forming a plurality of interconnect layers within a dielectric structure over a substrate. A dielectric layer arranged along a top of the dielectric structure is patterned to define a via hole exposing an uppermost one of the plurality of interconnect layers. An extension via is formed within the via hole and one or more conductive materials are formed over the dielectric layer and the extension via. The one or more conductive materials are patterned to define a sensing electrode over and electrically coupled to the extension via. A microelectromechanical systems (MEMS) substrate is bonded to the substrate. The MEMs substrate is vertically separated from the sensing electrode.
Abstract:
The integrated CMOS-MEMS device includes a CMOS structure, a cap structure, and a MEMS structure. The CMOS structure, fabricated on a first substrate, includes at least one conducting layer. The cap structure, including vias passing through the cap structure, has an isolation layer deposited on its first side and has a conductive routing layer deposited on its second side. The MEMS structure is deposited between the first substrate and the cap structure. The integrated CMOS-MEMS device also includes a conductive connector that passes through one of the vias and through an opening in the isolation layer on the cap structure. The conductive connector conductively connects a conductive path in the conductive routing layer on the cap structure with the at least one conducting layer of the CMOS structure.
Abstract:
Processes for integrating complementary metal-oxide-semiconductor (CMOS) devices with microelectromechanical systems (MEMS) devices are provided. In some embodiments, the MEMS devices are formed on a sacrificial substrate or wafer, the sacrificial substrate or wafer is bonded to a CMOS die or wafer, and the sacrificial substrate or wafer is removed. In other embodiments, the MEMS devices are formed over a sacrificial region of a CMOS die or wafer and the sacrificial region is subsequently removed. Integrated circuit (ICs) resulting from the processes are also provided.
Abstract:
Various embodiments of the present disclosure are directed towards a method for forming a microelectromechanical systems (MEMS) structure including an epitaxial layer overlying a MEMS substrate. The method includes bonding a MEMS substrate to a carrier substrate. The epitaxial layer is formed over the MEMS substrate, where the epitaxial layer has a higher doping concentration than the MEMS substrate. A plurality of contacts is formed over the epitaxial layer.
Abstract:
Various embodiments of the present disclosure are directed towards a microphone including a particle filter disposed between a microelectromechanical systems (MEMS) substrate and a carrier substrate. A MEMS device structure overlies the MEMS substrate. The MEMS device structure includes a diaphragm having opposing sidewalls that define a diaphragm opening. The carrier substrate underlies the MEMS substrate. The carrier substrate has opposing sidewalls that define a carrier substrate opening underlying the diaphragm opening. A filter stack is sandwiched between the carrier substrate and the MEMS substrate. The filter stack includes an upper dielectric layer, a lower dielectric layer, and a particle filter layer disposed between the upper and lower dielectric layers. The particle filter layer includes the particle filter spaced laterally between the opposing sidewalls of the carrier substrate.