Abstract:
A semiconductor structure includes a dielectric layer located on a substrate, wherein the dielectric layer includes nitrogen atoms, and the concentration of the nitrogen atoms in the dielectric layer is lower than 5% at a location wherein the distance between this location in the dielectric layer to the substrate is less than 20% of the thickness of the dielectric layer. Moreover, the present invention provides a semiconductor process including the following steps: a dielectric layer is formed on a substrate. Two annealing processes are performed in-situly on the dielectric layer, wherein the two annealing processes have different imported gases and different annealing temperatures.
Abstract:
A gate forming process includes the following steps. A gate dielectric layer is formed on a substrate. A barrier layer is formed on the gate dielectric layer. A silicon seed layer and a silicon layer are sequentially and directly formed on the barrier layer, wherein the silicon seed layer and the silicon layer are formed by different precursors.
Abstract:
A method of forming a patterned hark mask layer includes the following steps. A semiconductor substrate is provided. An amorphous silicon layer is formed on the semiconductor substrate. An implantation process is performed on the amorphous silicon layer. An annealing treatment is performed on the amorphous silicon layer after the implantation process. A patterned hard mask layer is formed on the amorphous silicon layer after the annealing treatment.
Abstract:
A method for manufacturing semiconductor devices includes following steps. A substrate including a first gate structure and a second gate structure formed thereon is provided. The first gate structure and the second gate structure are complementary to each other. Next, a first mask layer covering the second gate structure is formed and followed by forming first recesses in the substrate at two respective sides of the first transistor. Then, forming the first recesses, a first epitaxial layer is formed in each first recess. After forming the first epitaxial layers, a local protecting cap is formed on the first epitaxial layers and followed by removing the first mask layer.
Abstract:
The present invention provides a method for forming a semiconductor structure, comprising: firstly, a substrate is provided, next, a first dry etching process is performed, to form a recess in the substrate. Afterwards, an ion implantation process is performed to a bottom surface of the recess, a wet etching process is then performed, to etch partial sidewalls of the recess, so as to form at least two tips on two sides of the recess respectively, and a second dry etching process is performed, to etch partial bottom surface of the recess, wherein after the second dry etching process is performed, a lower portion of the recess has a U-shaped cross section profile.
Abstract:
A method for manufacturing semiconductor devices includes following steps. A substrate including a first gate structure and a second gate structure formed thereon is provided. The first gate structure and the second gate structure are complementary to each other. Next, a first mask layer covering the second gate structure is formed and followed by forming first recesses in the substrate at two respective sides of the first transistor. Then, forming the first recesses, a first epitaxial layer is formed in each first recess. After forming the first epitaxial layers, a local protecting cap is formed on the first epitaxial layers and followed by removing the first mask layer.
Abstract:
The present invention provides a semiconductor structure, which includes a substrate, at least two gate structures disposed on the substrate, a first recess, disposed in the substrate between two gate structures, the first recess having a U-shaped cross section profile, and a second recess, disposed on the first recess, the second recess having a polygonal shaped cross section profile, and has at least two tips on two sides of the second recess, the first recess and the second recess forming an epitaxial recess.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having gate structure thereon, wherein the gate structure comprises a high-k dielectric layer; increasing an ambient pressure around the gate structure to a predetermined pressure by injecting a first gas; reducing the ambient pressure to a base pressure; and forming a spacer around the gate structure.
Abstract:
A method for forming a HfOx film based on atomic layer deposition (ALD) process includes: providing a substrate; dividing a plurality of ALD cycles as needed into multiple depositing stages, wherein each of the ALD cycles includes applying HfCl4 pulse and applying H2O pulse over the substrate and a content ratio of HfCl4 to H2O is different and increasing for the depositing stages; and performing the depositing stages to form a HfOx film.
Abstract:
A method for fabricating shallow trench isolation structure is disclosed. The method includes the steps of: (a) providing a substrate; (b) forming a trench in the substrate; (c) forming a silicon layer in the trench; and (d) performing an oxidation process to partially transform a surface of the silicon layer into an oxide layer.