Abstract:
Systems and methods for electronically providing coaching feedback to a user during an athletic activity are disclosed. The method may include receiving electronic data, collecting second electronic data, generating comparison electronic speed data by comparing the second electronic speed data to the first electronic speed data, prompting the user.
Abstract:
Systems, methods, apparatuses, and computer readable media are disclosed for providing interference rejection in ultra-wideband real time locating systems. In one embodiment, an ultra-wideband (UWB) receiver is configured to: receive an interference signal from a source positioned outside a monitored region; receive a composite signal transmitted from a tagged object moving about a playing field within the monitored region, wherein the composite signal comprises a location signal and a component of the interference signal; detect whether the component of the interference signal exceeds a threshold value; and adjust, via a processor, filtering of the composite signal to attenuate the component of the interference signal based on whether the component of the interference signal exceeds the threshold value. Some embodiments provide for filtering of the composite signal using a combiner while others employ a tunable notch filter. Corresponding systems, methods, and computer-readable storage medium are also provided.
Abstract:
An electronic device may comprise audio processing circuitry, pace tracking circuitry, and positioning circuitry. The pace tracking circuitry may be operable to selects songs to be processed for playback, and/or control time stretching applied to such songs, by the audio processing circuitry based on position data generated by the positioning circuitry. The position data may indicate the pace of a runner during a preceding, determined time interval. The pace tracking circuitry may be operable to control the song selection and/or time stretching based on a runner profile data stored in memory of the music device. The profile data may comprise runner's distance-per-stride data. The electronic device may comprise one or more sensors operable to function as a pedometer. The pace tracking circuitry may be operable to update the distance-per-stride data based on the position data and based on data output by the one or more sensors.
Abstract:
A method includes determining a location of a first monitoring device used while performing an activity. The first monitoring device is worn by a first user. The method includes determining a location of a second monitoring device used while performing an activity. The second monitoring device is worn by a second user. The method further includes determining whether the locations of the first and second monitoring devices are within a range and whether the activities are similar. The method includes sending a prompt to the first monitoring device upon determining that the activities are similar and the locations are within the range. The prompt includes a request for permission from a first user account to allow a second user account to access information from the first user account regarding the activity performed using the first monitoring device.
Abstract:
An athletic device is worn by a participant during an athletic event (e.g., a race). In one example, a race course is provided with a plurality of mats or signal devices along the race course. The mats may have antennas and generate a magnetic field. The device may include a chip system having an RFID tag and a display. As the participant progress along the course, the tag is triggered at each mat and race data may be displayed on the device. Data relating to a location of the participant may also be provided to the participant during the athletic event.
Abstract:
An underwater touchpad with optional visual information display especially suitable for swimming event timing and training sessions is provided with piezoresistive force sensors, signal processing circuitry, and signaling outputs. By replacing underwater electrical contacts found in some touchpad designs, problems with leaking water and ambient pressure sensitivity are addressed. By replacing accelerometers found in some other touchpad designs, new data can be gleaned from the pressure of the touch, for example. Optionally, the touchpad may also be provided with an integrated display capability to highlight areas to be touched, to provide timing feedback, and other information useful both in training and in competition.
Abstract:
In one embodiment, a method of providing a health coaching message to a user of a portable electronic coaching system includes receiving first data corresponding to a nutritional consumption of the user from the portable electronic coaching system of the user, receiving second data corresponding to a nutritional expenditure of the user from the portable electronic coaching system of the user, calculating, via a processor of the portable electronic coaching system, a nutritional value based on the first and second data, and receiving an electronic coaching message based on a comparison of the nutritional value to a predetermined value.
Abstract:
Sports electronic training systems with sport ball and electronic gaming features are disclosed. In an embodiment, a method of transferring data from a sport ball to an electronic game includes the sport ball determining the occurrence of an event and the sport ball transmitting data related to the event to the electronic game.
Abstract:
A soccer training device is disclosed to improve the accuracy of a sport participant in the kicking of a soccer ball. The invention develops a soccer player's ball control using all parts of the foot including: first touch, striking, dribbling, trapping, rolling, and passing. The invention is made up of 5 main parts: Tethered Soccer Ball, Adjustable Rope, X-Y Rotation device, Base Plate and a Digital Counter/Timer which keeps track of the rotations. The training device comprises a weighted ground level base plate that supports the X-Y rotation device. The horizontal and vertical rotating axis apparatus extends upward and outward attaching to a tethered soccer ball. The ball attachment is connected to the apparatus with a rope. When kicked, the device allows for the ball to move across the floor in an uniform 360° motion. The device minimizes friction at the axis points and absorbs inertia allowing the ball to roll on the floor minimizing bounce at maximum acceleration for repeated rotations and constant delivery without rope fraying, encumbrance to the kicker, and base plate movement.
Abstract:
Athletic performance monitoring systems include GPS data to enhance various features of the workout as well as the post-workout data analysis. Such features include using output from multiple sensors to determine the most accurate data available for providing distance measurements for individual segments of a route. The most accurate data for each route segment, from whatever source, then is used to provide the overall route distance and as the basis for making other calculations, such as pace, calorie burn, etc. Another feature relates to the ability to both input and output geographically tagged messages while moving along a route during an athletic performance.