Abstract:
An ultrasonic welding device for welding two components has a rod-shaped first sonotrode for the generation of longitudinal waves and is coupled on its first end to a first converter and on its second end opposite the first end to a second converter. A first welding surface is provided in the middle of the first sonotrode. To improve durability and welding performance, a second sonotrode which is coupled to at least one third converter and is configured as a torsion sonotrode, has a second welding surface arranged opposite the first welding surface. The first and second sonotrodes can be moved relatively to each other such that a clamping force between the first and the second welding surface can be applied to the components to be connected.
Abstract:
An ultrasonic bond is formed using a bond tool foot having a waffle shape of thin protrusions and gaps between the protrusions. The tool is brought in contact with the ribbon to a depth to create depressions in a ribbon approximately 150 μm or less from the underlying bonding surface. The tool is then brought down further into the ribbon to contact the portions of the ribbon between the depressions, such as an additional 25 to 50 μm. The result is lightly bonded regions underneath the groove portions and highly bonded regions underneath the protrusions and around the perimeter of the bond. In another embodiment, an ultrasonic bond is formed along a partial width of a ribbon.
Abstract:
A method of forming a metallic container includes the steps of providing body and lid portions, placing the body and lid portions together, keeping portions of the body and lid portions in contact with one another, and reciprocally rotating the lid portion with respect to the body portion, thereby generating frictional heat and forming a friction weld therebetween. An apparatus for attaching the lid and body portions of a metallic container includes a base to support the body, a support assembly to support a flange of the body, and a sonitrode for contacting a flange of the lid, wherein the flanges of the lid and body are held together between the support assembly and the sonitrode. A motor reciprocally rotates the sonitrode relative to the support assembly, thereby moving the flanges relative one another to generate frictional heat and create a friction weld therebetween.
Abstract:
A bonding apparatus for bonding a length of wire comprises a first module which is drivable along a linear axis towards and away from a bonding point and a second module slidably mounted to the first module. A wire cutter is mounted to the first module and a bonding tool is mounted to the second module. A coupling mechanism is operative to lock the second module in fixed relative position to the first module, and to unlock the second module from its fixed relative position to the first module so that the second module is slidable relative to the first module in directions parallel to the linear axis.
Abstract:
An improved member for use in welding seamed flexible belts to produce smoother seams having reduced seam thickness. The improved member has a unique configuration, that includes a ridge defined at an end of the member and further includes a V-shape groove or cut defined in the ridge, which helps facilitate welding of the seam overlap region.
Abstract:
An ultrasonic welding tool fabricated of powder metal material includes a body and a welding tip extending axially from the body to a working end. The powder metal material can be ferrous-based and admixed with additives, such as alumina, carbide, ferro-molybdenum, ferro-nickel, chrome or tribaloy. An exposed surface of the welding tip can comprise Fe3O4 oxides. The tool is compacted to the desired shape and sintered. The body can include a different second material compacted separately from the welding tip and then joined to the tip and sintered.
Abstract:
In an bonding apparatus, a piezoelectric element 4 being built into the vicinity of the capillary attachment portion of a bonding arm 1 so that the capillary 3 can be caused to vibrate in the axial direction of the bonding arm 1. The preparatory pressure application device that applies a preparatory pressure to the piezoelectric element 4 includes two wedge-form attachment bases 5 and 6 which are disposed to the rear of or behind the piezoelectric element 4, and a preparatory pressure bolt 7 which is screwed into the wedge-form attachment base 6 from the outside of the bonding arm 1; and a preparatory pressure is applied to the piezoelectric element 4 by the movement of the wedge-form attachment base 5 in the axial direction of the bonding arm 1 caused by the rotation of the preparatory pressure bolt 7.
Abstract:
According to an aspect of an embodiment, a wire bonding method includes vibrating a capillary of a bonding head, the capillary having a heater attached thereto at a position corresponding to a node of vibration of the capillary generated by the vibration heating the capillary with the heater and performing a wire bonding operation while heating the capillary with the heater.
Abstract:
An ultrasonic welding system is provided for creating an ultrasonically welded seam in a plurality of layers of a material, for example a foil bag having a plurality of foil layers. The system preferably includes a sonotrode and an anvil constructed and arranged to apply a welding force at an angle of less than 90° with respect to the downward force of gravity. Accordingly, a vertical welding force can be provided on the foil layers to weld the foil layers together from the bottom upward.
Abstract:
A flange-mounted transducer, such as an ultrasonic transducer, is provided that comprises a horn and a driver coupled to the horn for generating an oscillatory energy supply to the horn. A support structure interface is positioned at a node of longitudinal oscillatory displacement of the transducer and a support structure spaced from the horn extends from the support structure interface in a direction substantially parallel to a longitudinal axis of the horn. A flange mounted to the support structure at a node of radial oscillatory displacement of the support structure allows the transducer to be mounted to a machine, such as an ultrasonic wire-bonding machine, at a mounting position so that minimal vibration is transmitted from the transducer to the mounting position.