Abstract:
To provide an inorganic fiber that suppresses adverse effects on a human body and living environments, exhibits high biosolubility, and also exhibits excellent heat resistance as a constituent material for a filter material, a sealing material, or the like. The inorganic fiber comprises 30 mass % or more and less than 81 mass % of Al2O3, more than 19 mass % and 65 mass % or less of MgO and 0 mass % to 40 mass % of SiO2, wherein the total content of Al2O3, MgO and SiO2 relative to the entire fiber is 98 mass % or more.
Abstract translation:为了提供抑制对人体和生活环境的不良影响的无机纤维,显示出高的生物溶解性,并且还表现出优异的耐热性,作为过滤材料,密封材料等的构成材料。 无机纤维包含30质量%以上且小于81质量%的Al 2 O 3,超过19质量%和65质量%以下的MgO和0质量%〜40质量%的SiO 2,其中,Al 2 O 3,MgO 相对于整个纤维的SiO 2为98质量%以上。
Abstract:
A handle substrate 1 is made of a translucent ceramics. An average density of pores having a size of 0.6 to 3.0 μm included in a surface region 2A on the side of a bonding face 1a of the handle substrate 1 is 50 counts/mm2 or smaller. It is formed a region 3, whose average density of pores having a size of 0.5 to 3.0 μm is 100 counts/mm2 or larger, in the handle substrate 1. The translucent ceramics has an average grain size of 5 to 60 μm.
Abstract translation:手柄基板1由半透明陶瓷制成。 包括在手柄基板1的接合面1a侧的表面区域2A中的尺寸为0.6〜3.0μm的孔的平均密度为50个/ mm 2以下。 在手柄基板1中形成有尺寸为0.5〜3.0μm的孔的平均密度为100个/ mm 2以上的区域3。透光性陶瓷的平均粒径为5〜60μm。
Abstract:
Disclosed herein are emissive ceramic materials having a dopant concentration gradient along a thickness of a yttrium aluminum garnet (YAG) region. The dopant concentration gradient may include a maximum dopant concentration, a half-maximum dopant concentration, and a slope at or near the half-maximum dopant concentration. The emissive ceramics may, in some embodiments, exhibit high internal quantum efficiencies (IQE). The emissive ceramics may, in some embodiments, include porous regions. Also disclosed herein are methods of make the emissive ceramic by sintering an assembly having doped and non-doped layers.
Abstract:
Provided is a Bi-based piezoelectric material having good piezoelectric properties. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Ax(ZnjTi(1-j))l(MgkTi(1-k))mMnO3 General formula (1) where: A represents a Bi element, or one or more kinds of elements selected from the group consisting of trivalent metal elements and containing at least a Bi element; M represents at least one kind of an element selected from the group consisting of Fe, Al, Sc, Mn, Y, Ga, and Yb; and 0.9≦x≦1.25, 0.4≦j≦0.6, 0.4≦k≦0.6, 0.09≦l≦0.49, 0.19≦m≦0.64, 0.13≦n≦0.48, and l+m+n=1 are satisfied.
Abstract:
A method of manufacturing an electrically conductive mayenite compound, includes preparing a body to be processed including a mayenite compound; and placing the body to be processed in the presence of carbon monoxide gas and aluminum vapor supplied from an aluminum source without being in contact with the aluminum source and retaining the body to be processed at a temperature range of 1080° C. to 1450° C. under a reducing atmosphere.
Abstract:
Electric sintering of precursor materials to prepare phosphor ceramics is described herein. The phosphor ceramics prepared by electric sintering may be incorporated into devices such as light-emitting devices, lasers, or for other purposes.
Abstract:
Feed material comprising uniform solution precursor droplets is processed in a uniform melt state using microwave generated plasma. The plasma torch employed is capable of generating laminar gas flows and providing a uniform temperature profile within the plasma. Plasma exhaust products are quenched at high rates to yield amorphous products. Products of this process include spherical, highly porous and amorphous oxide ceramic particles such as magnesia-yttria (MgO—Y2O3). The present invention can also be used to produce amorphous non oxide ceramic particles comprised of Boron, Carbon, and Nitrogen which can be subsequently consolidated into super hard materials.
Abstract:
A sprayed article is prepared by thermally spraying ceramic particles of rare earth oxide or fluoride or metal particles of W, Mo or Ta onto an outer or inner surface of a cylindrical carbon substrate to form a sprayed coating, and burning out the carbon substrate, thus leaving the ceramic or metal-base sprayed coating of cylindrical shape having a wall thickness of 0.5-5 mm.
Abstract:
There is provided an electrostatic chuck member made of a complex oxide sintered body obtained by substituting some of yttrium in yttrium aluminum oxide with a rare earth element (RE) excluding yttrium, in which a ratio [NRE/(NY+NRE)] of the number of atoms of the rare earth element excluding yttrium (NRE) to the sum (NY+NRE) of the number of yttrium atoms (NY) and the number of the atoms of the rare earth element excluding yttrium (NRE) is in a range of 0.01 to less than 0.5, and a volume resistance of the complex oxide sintered compact is in a range of 1×1010 Ω·cm to less than 1×1015 Ω·cm.
Abstract:
The present invention relates to a composite ceramic which comprises a conversion phosphor and a further material, characterised in that the further material has a negative coefficient of thermal expansion, and to a process for the preparation thereof. Furthermore, the present invention also relates to the use of the composite ceramic according to the invention as emission-converting material, preferably in a white light source, and to a light source, a lighting unit and a display device.