Abstract:
A method and device for measuring the soot load in the exhaust gas systems of diesel engines using a sensor which is mounted downstream of a particulate filter and comprises a sensor element, to measure the operability of the particulate filter. According to the method, the soot load of the sensor element is measured resistively or capacitively using electrodes. The measuring voltage of the sensor element is controlled depending on at least one actual operating parameter of the diesel engine.
Abstract:
A portable breath analyzing device to measure the rate of partial gas that is exhaled in the breath fluid. The device includes a rechargeable power supply unit, a device to emit pulsated infrared radiation, an infrared receiver, and a measuring vessel. The emission device includes a heating element; the measuring vessel includes a metallic tube whose interior surface is polished and coated with a deposit that reflects at least the infrared radiation of wavelengths that are between (9 μm, 10 μm) and at each end of the tube, a nozzle comprising a cone-shaped section meant to be placed in the tube axis. The infrared emission device is placed on the longitudinal axis of the tube, at the level of one of the nozzles, and the receiver is placed on the longitudinal axis, at the level of the other nozzle.
Abstract:
A system for the detection and analysis of at least one volatile substance in breath samples of a subject, including at least one source of infrared radiation adapted to the wavelength range of specific absorption peaks of said substances, a plurality of reflecting surfaces of said radiation adapted for collimation onto at least one detector providing a plurality of electrical output signals corresponding to the transmission of said radiation within wavelength intervals corresponding to said absorption peaks, at least one measuring cell including a mechanical support structure defining the position of said source, reflecting surfaces and detector, adapted to the reception and disposal of said breath sample, and exposing it to said radiation, at least one electronic signal processing unit with capacity to analyse said signals with respect to pre-programmed information concerning infrared absorption spectra of said substances. The response of the system being displayed or otherwise communicated, and perceived as essentially instantaneous.
Abstract:
A compact analyzer for dry biochemical analysis of blood samples, integrating onto a common chassis (11): a measuring chamber (20) adapted to receive a disposable rotor (13) including microtanks (13A, 13B) containing dry reagents, a digital dilution module (21) of fixed or variable ratio defined as a function of the species of the sample to be analyzed, a sample centrifuging module (12) adapted, inside the measuring chamber, to centrifuge the rotor and position it angularly, an optical module adapted to apply beams of light to microtanks of the rotor, this optical module including a flash-lamp type light source (14) and a reference light sensor (16), an electronic processing and control system (23, 24, 25) including an external memory reader (26) adapted to read a portable external memory (27) containing at least information characteristic of at least the disposable rotor in use.
Abstract:
An emitting source capable of radiating substantial energy in the near infrared spectrum and suitable for use in non-dispersive infrared gas analyzers or other devices is described. Operation can be steady state (DC) or pulsed at high frequency with excellent modulation characteristics. The device consists of a tungsten filament mounted across the pins of a small transistor outline header and centered at the focal point of a parabolic or other shaped reflector. The header assembly is enclosed by a resistance-welded cap and window assembly having a specially sealed sapphire or other suitable IR transmissive window. Fundamental to the operation of the inventive IR emitter is the incorporation of a getter within the header package configured to prevent oxidation degradation of the tungsten filament. An inert gas backfill limits filament evaporation and further extends apparatus lifetime.
Abstract:
A blackbody radiation device (110) includes a planar filament emission element (102) and a planar detector (104) for respectively producing and detecting radiation having width dl/1 less than about 0.1 to test a sample gas, where 1 is the wavelength of the radiation; a reflector (108); a window (W); an electrical control (118); and a data output element (116).
Abstract:
This invention relates to an apparatus and a method for performing fluorometric measurements, and particularly to a fully automated apparatus for measuring the fluorescence of a fluorescent tag contained in a test sample for allergy assays. Said apparatus comprising, an excitation radiation source (6) including an incandescent filament (30) cooperating with, an optical unit (4) for providing light of an appropriate wavelength for excitation of the fluorescent tag contained within the test sample, and for collecting the emitted fluorescent radiation without disturbances from the excited wavelength, an electronic unit (2) for controlling the intensity of the incandescent filament (30) of the excitation radiations source (6) and evaluating the emitted fluorescent radiation, said optical unit (4) comprising an L-shaped light channel (34), and a capillary tube (8) movably provided at the centre of the intersection between the two legs of the L-shaped light channel (34) and aligned with the incandescent filament (30), said capillary tube (8) being moveable between two positions and being repeatedly, between each measurement, suppliable with a new test sample.
Abstract:
A device for detecting at least one gas with an absorption band in the infrared range. The device includes a cell containing a gas mixture to be tested, an infrared radiation source, a power supply circuit for the source, an infrared radiation sensor and a signal processing line connected to the output of the sensor. The cell is compact and the radiation source and the radiation sensor are held in direct contact with the gas mixture therein.
Abstract:
A compact infrared gas analyzer capable of reducing the quantity of heat generated from a radiation source and the effects of temperature on samples is provided. A shutter is provided between the radiation source and the sample cell and/or between the sample cell and a detector with the shutter in a closed position. The shutter is opened and closed during measurement. A resistor comprising a resistance element made of one of RuO.sub.2, W, SnO.sub.2, FeCrAlY, Pt, Pt-Rh and Pt-Pd, formed on an AlN substrate, may be used as the radiation source, with the radiation source and the shutter being interrelatedly controlled.
Abstract:
The fire detector includes a carbon dioxide sensor and a microcomputer. When the rate of increase of the concentration of carbon dioxide at the sensor exceeds a threshold, an alarm is produced. The threshold is set at one of three possible levels by the microcomputer in response to the state of the atmosphere at the sensor as determined by the microcomputer based on several variables that are derived from the sensed concentration of carbon dioxide. The derived variables include the average concentration of carbon dioxide, the average rate of change of carbon dioxide concentration, the monotonicity of the increase or decrease of the carbon dioxide concentration and the range of concentrations sensed in each cycle of operation. The threshold setting is determined every ten seconds. In this way, the setting of the rate threshold is responsive to variations in the carbon dioxide level at the sensor that are caused by entities other than a fire, such as the presence or absence of people in a closed room.