Abstract:
The present disclosure relates to washers for lithium ion battery cell terminals. A lithium ion battery module includes a housing, a first battery cell disposed in the housing and having a cell terminal protruding from a surface of a casing of the first battery cell, where the cell terminal is configured to enable electrical connection to the battery cell, and a washer stack disposed about the cell terminal. The washer stack has an electrically insulative washer and an electrically conductive washer. The electrically conductive washer is disposed adjacent to the electrically insulative washer such that the electrically insulative washer is positioned between the electrically conductive washer and the surface of the casing, and the electrically conductive washer is configured to enable electrical connection to the cell terminal.
Abstract:
The present disclosure relates generally to a battery module having a housing and a stack of battery cells disposed in the housing. Each battery cell has a battery cell terminal and a battery cell vent on an end of each battery cell, and the battery cell vent is configured to exhaust effluent into the housing. The battery module has a vent shield plate disposed in the housing and directly along an immediate vent path of the effluent, a first surface of the vent shield plate configured to direct the effluent to an opening between the shield plate and the housing, and a second surface of the vent shield plate opposite the first surface. The battery module also has a venting chamber coupled to the opening and at least partially defined by the second surface and a vent configured to direct the effluent out of the battery module.
Abstract:
An electrode group formed by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween is housed in a battery case, and a sealing plate seals an opening of the battery case. The sealing plate includes an upper metal plate, a valve, and a lower metal plate that are stacked, an insulating plate is placed on a portion of the electrode group near the opening of the battery case, one of the positive electrode plate or the negative electrode plate of the electrode group is connected to the lower metal plate through a lead, the lower metal plate and the insulating plate have a first opening and a second opening, respectively, and a ratio of S2 is within the range of 1.8-3.3, where S1 represents an area of the first opening, and S2 represents an area of the second opening.
Abstract:
A rechargeable battery includes: an electrode; a case accommodating the electrode assembly therein; a cap plate closing an opening of the case; a first electrode terminal and a second electrode terminal extending through the cap plate and coupled to the electrode assembly; and an external short-circuiter including a membrane closing and sealing a short-circuit opening in the cap plate and coupled to the second electrode terminal, and a short-circuit tab coupled to the first electrode terminal and separated from the membrane, wherein the cap plate includes a bending inducement groove formed at the second electrode terminal.
Abstract:
A battery cell assembly having first and second frame members is provided. The first frame member has a first rectangular ring-shaped body and a first coupler portion. The first coupler portion has a first tab member with a first metal trim clip member coupled thereto. The second frame member has a second rectangular ring-shaped body and a second coupler portion. The second coupler portion has first and second substantially flat walls and first and second peripheral wall portions defining an interior region. The second substantially flat wall has an aperture extending therethrough. The first metal trim clip member is disposed through the aperture and into the interior region of the second coupler portion, and engages an inner surface of the second substantially flat wall to couple the second frame member to the first frame member.
Abstract:
Provided is a packaging material for electrochemical cells which has an identification mark that can be recognized from the outside and that is difficult to forge. The packaging material comprises a multilayer film which has a structure formed by laminating a base layer (11), an adhesive layer (13), a metal foil layer (12), an acid-modified polyolefin layer (14), and a heat-sealable layer (15) in this order, wherein the base layer (11) comprises both a oriented polyester film (11b) and a oriented nylon film (11e) with a printed layer (11c) provided on the surface of the oriented polyester film (11b) that faces the oriented nylon film (11e).
Abstract:
A moss guard for a lead-acid battery cell includes a body and a plurality of fingers extending from a side of the body. The plurality of fingers are configured to substantially cover the top surfaces of negative electrodes between the negative electrodes and a positive strap. An end of at least one of the plurality of fingers distal to the body includes a lock, and the lock is configured to resiliently deflect between an engaged position and a disengaged position. The lock is configured to fix the moss guard with respect to positive lugs while in the engaged position.
Abstract:
An electrochemical device includes a plurality of electrode assemblies arranged spaced apart from each other in a same direction and a casing member which packages the electrode assemblies, in which the casing member includes a plurality of accommodation portions which accommodates the electrode assemblies, respectively, and a connecting portion which connects between two adjacent accommodation portions, a thickness of the connecting portion is less than a thickness of the accommodation portions, and the connecting portion is bent defining a curved bending portion.
Abstract:
A rechargeable battery including an electrode assembly having a first electrode tab upwardly protruding from the electrode assembly and a second electrode tab upwardly protruding from the electrode assembly; a first support body surrounding a side portion of the electrode assembly; a case accommodating the electrode assembly and the first support body, the case having a top opening; and a cap assembly sealing the top opening of the case, wherein the first support body includes a plate-shaped main body contacting one long side surface of the electrode assembly, and a side surface part bent from the main body, the side surface part having elasticity and surrounding short side surfaces of the electrode assembly.
Abstract:
A secondary battery includes, in a battery case, an electrode body having an electrode sheet, a current collecting member including a weld part ultrasonic welded to a current collecting foil of the electrode sheet, and a pressure-type current interrupt mechanism electrically connected to the current collecting member. The current interrupt mechanism has a first valve element integrated with the current collecting member and a second element body, both joined at a joint portion. Of the current collecting member, the first valve element, and the second valve element, at least a part between the weld part and the joint portion is made of damping metal. A method of manufacturing this secondary battery includes: a step of forming a structure in which the first and second valve elements are joined at the joint portion; and a step of thereafter ultrasonic welding the current collecting foil and the weld part.