摘要:
Embodiments of the present invention comprise systems and methods for predicting high dynamic range (HDR) image blocks with block-specific prediction data, where the systems and methods may comprise low dynamic range (LDR) image data and HDR image data for a target image block, where a scaled, offset LDR image block may be combined with HDR residual image block to form an HDR image block corresponding to the target image block.
摘要:
Techniques and tools are described for scalable video encoding and decoding. In some embodiments, an input frame is downsampled in terms of sample depth and chroma sampling rate, encoded, and output from the encoder as a base layer bitstream. The base layer bitstream is also reconstructed and upsampled to produce a reconstructed bitstream which is subtracted from the original input frame to produce a residual layer. The residual layer is split and encoded as a sample depth residual layer bitstream and a chroma high-pass residual layer bitstream. To recover the encoded input frame, a decoder receives one or more of these bitstreams, decodes them, and combines them to form a reconstructed image. The use of separate codecs is allowed for the base layer and the enhancement layers, without inter-layer dependencies.
摘要:
Apparatus and methods of using content information for encoding multimedia data are described. A method of processing multimedia data includes receiving multimedia data, and encoding the multimedia data into a first data group and a second data group based on content of the multimedia data, the first data group being configured to be independently decodable from the second data group, and wherein the first and second data groups are encoded at different quality levels. The method can also include classifying the content of the multimedia data and encoding the multimedia data based on the content classification.
摘要:
A method, medium, and apparatus for encoding and/or decoding video by generating a scalable bitstream formed of a base layer bitstream and an enhancement layer bitstream so as to have forward compatibility, wherein the enhancement layer bitstream comprises a bit-depth field of the enhancement layer, a frame or a picture type field of the enhancement layer in consideration of a frame or a picture type of the base layer, an additional quantization information field for obtaining a quantization parameter of the enhancement layer together with a quantization parameter of the base layer, an intra-macroblock field of the enhancement layer, and an inter-macroblock field of the enhancement layer.
摘要:
There is provided an image processing apparatus which includes a division unit dividing an image into a plurality of images in a bit depth direction, and an encoding unit encoding respectively some or all of the plurality of images acquired by dividing the image in the bit depth direction by the division unit.
摘要:
In the scalable video coding in connection with motion compensation both in a base layer and in an enhancement layer, a prediction of the motion data of the enhancement layer is performed by using the motion data of the base layer to obtain a scalability concept, which provides, on the one hand, a maximum flexibility for the calculation of the motion data of the different layers and, on the other hand, allows a lower bit rate.
摘要:
Systems and methods for error resilient transmission, rate control, and random access in video communication systems that use sealable video coding are provided. Error resilience is obtained by using information from low resolution layers to conceal or compensate loss of high resolution layer information. The same mechanism is used for rate control by selectively eliminating high resolution layer information from transmitted signals, which elimination can be compensated at the receiver using information from low resolution layers. Further, random access or switching between low and high resolutions is also achieved by using information from low resolution layers to compensate for high resolution spatial layer packets that may have not been received prior to the switching time.
摘要:
According to an embodiment, an encoding device includes a first encoder, a filter processor, a difference image generating unit, and a second encoder. The first encoder encodes an input image by a first encoding process to obtain first encoded data. The filter processor filters a first decoded image included in the first encoded data by cutting off a specific frequency band of frequency components to obtain a base image. The difference image generating unit generates a difference image between the input image and the base image. The second encoder encodes the difference image by a second encoding process to obtain second encoded data.
摘要:
A technique for improving image compression by pre-processing the image frames. In particular, methods for de-interlacing and noise reduction using combinations of median filters, applied both spatially and temporally, with and without motion analysis, are described.
摘要:
A scalable video bitstream may have an H.264/AVC compatible base layer and a scalable enhancement layer, where scalability refers to color bit-depth. According to the invention, BL information is bit-depth upsampled using separate look-up tables for inverse tone mapping on two or more hierarchy levels, such as picture level, slice level or MB level. The look-up tables are differentially encoded and included in header information. Bit-depth upsampling is a process that increases the number of values that each pixel can have, corresponding to the pixels color intensity. The upsampled base layer data are used to predict the collocated enhancement layer, based on said look-up tables. The upsampling is done at the encoder side and in the same manner at the decoder side, wherein the upsampling may refer to temporal, spatial and bit depth characteristics. Thus, the bit-depth upsampling is compatible with texture upsampling.