Abstract:
A wireless communication device, such as an RFID tag, is provided material that is dielectric, unless a voltage is applied that exceeds the materials characteristic voltage level. In the presence of such voltage, the material becomes conductive. The integration of such material into the device may be mechanical and/or electrical.
Abstract:
The invention provides a process for preparing an overvoltage protection material comprising: (i) preparing a mixture comprising a polymer binder precursor and a conductive material; and (ii) heating the mixture to cause reaction of the polymer binder precursor and generate a polymer matrix having conductive material dispersed therein, wherein the polymer binder precursor is chosen such that substantially no solvent is generated during the reaction.
Abstract:
One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.
Abstract:
One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.
Abstract:
A substrate device includes a layer of non-linear resistive transient protective material and a plurality of conductive elements that form part of a conductive layer. The conductive elements include a pair of electrodes that are spaced by a gap, but which electrically interconnect when the transient protective material is conductive. The substrate includes features to linearize a transient electrical path that is formed across the gap.
Abstract:
A substrate device includes an embedded layer of VSD material that overlays a conductive element or layer to provide a ground. An electrode, connected to circuit elements that are to be protected, extends into the thickness of the substrate to make contact with the VSD layer. When the circuit elements are operated under normal voltages, the VSD layer is dielectric and not connected to ground. When a transient electrical event occurs on the circuit elements, the VSD layer switches instantly to a conductive state, so that the first electrode is connected to ground.
Abstract:
An ESD protection structure is provided. A substrate includes a first voltage variable material and has a first surface, a second surface substantially paralleled to the first surface and a via connecting the first and second surfaces. A first metal layer is disposed in the substrate for coupling to a ground terminal. The first voltage variable material is in a conductive state when an ESD event occurs, such that the via is electrically connected with the first metal layer to form a discharge path, and the first voltage variable material is in an isolation state when the ESD event is absent, such that the via is electrically isolated from the first metal layer.
Abstract:
Systems and methods for simultaneously partitioning a plurality of via structures into electrically isolated portions by using plating resist within a PCB stackup are disclosed. Such via structures are made by selectively depositing plating resist in one or more locations in a sub-composite structure. A plurality of sub-composite structures with plating resist deposited in varying locations are laminated to form a PCB stackup of a desired PCB design. Through-holes are drilled through the PCB stackup through conductive layers, dielectric layers and through the plating resist. Thus, the PCB panel has multiple through-holes that can then be plated simultaneously by placing the PCB panel into a seed bath, followed by immersion in an electroless copper bath. Such partitioned vias increase wiring density and limit stub formation in via structures. Such partitioned vias allow a plurality of electrical signals to traverse each electrically isolated portion without interference from each other.