Abstract:
A non-stoichiometric perovskite oxide having the general chemical formula LaXMnOY, in which the molar ratio of lanthanum to manganese (“X”) ranges from 0.85 to 0.95, can be used in particle form as an oxidation catalyst to oxidize NO to NO2 in an exhaust aftertreatment system for a hydrocarbon-fueled engine. The oxygen content (“Y”) fluctuates with variations in the molar ratio of lanthanum to manganese but generally falls somewhere in the range of 3.0 to 3.30. The crystal lattice adjustments spurred by the non-stoichiometric molar ratio of lanthanum to manganese are believed responsible for an enhanced NO oxidative activity relative to similar perovskite oxides with a higher molar ratio of lanthanum and manganese.
Abstract:
A high concentration NO2 gas generating system including a circulating path configured by connecting a chamber, a plasma generator, and a circulating means, wherein NO2 is generated by circulating a gas mixture including nitrogen and oxygen in the circulating path is provided. The high concentration NO2 gas generating system provides a high concentration NO2 generating system and the high concentration NO2 generating method using the generating system by which NO2 of high concentration (approximately 500 ppm or above) required for a high level of sterilization process in such as sterilization of medical instruments can be simply and selectively obtained. In addition, since indoor air is used as an ingredient, the management of ingredients is simple and highly safe, and the high concentration of NO2 can be simply and selectively prepared on demand.
Abstract:
A high concentration NO2 gas generating system including a circulating path configured by connecting a chamber, a plasma generator, and a circulating means, wherein NO2 is generated by circulating a gas mixture including nitrogen and oxygen in the circulating path is provided. The high concentration NO2 gas generating system provides a high concentration NO2 generating system and the high concentration NO2 generating method using the generating system by which NO2 of high concentration (approximately 500 ppm or above) required for a high level of sterilization process in such as sterilization of medical instruments can be simply and selectively obtained. In addition, since indoor air is used as an ingredient, the management of ingredients is simple and highly safe, and the high concentration of NO2 can be simply and selectively prepared on demand.
Abstract:
The present invention provides a method for binding gaseous molecules, the method comprising contacting gases comprising the gaseous molecules with trivalent metal complexes. Typically, the gaseous molecules comprise polar molecules of greenhouse gases, especially the oxides of carbon, nitrogen and sulphur. Preferably, the trivalent metal complexes comprise complexes of actinide metals, most preferably uranium. The method is particularly useful in the removal of so-called greenhouse gases from the atmosphere, and is therefore of potentially very great value environmentally. The invention also provides trivalent metal complexes comprising sandwich complexes of trivalent metals selected from transition metals and actinide metals, the complexes comprising two ligands selected from pentalenyl, indenyl, cyclopentadienyl and cyclooctatetraene ligands. The invention further provides a method for the preparation of the trivalent metal complexes.
Abstract:
A spacecraft-grade N.sub.2 O.sub.4 product is produced by a method and apparatus which utilize catalytic oxidation of ammonia in a gas phase. The apparatus consists of an ammonia gas supply, an air supply, an air preheater, a catalyst screen converter, one or more condensers, an oxygen supply, a desiccant such as molecular sieves or silica gel, and a cooler/collector. The method includes combusting gaseous ammonia via the catalyst screen in the converter to produce nitric oxide and water. The nitric oxide is subsequently oxidized to form nitrogen dioxide after substantially all of the water produced in the converter has been separated. The nitrogen dioxide is then passed through the molecular sieves and/or silica gel to remove most of any remaining water and iron, and the purified nitrogen dioxide is frozen in the collector to allow the collection of nitrogen tetroxide.
Abstract:
A process provided in accordance with practice of this invention for lowering the molar ratio of NO to NO.sub.2 in flue gas by converting a portion of flue gas nitric oxide (NO) to nitrogen dioxide (NO.sub.2), for removing the associated oxides of sulfur (SO.sub.x) and nitrogen (NO.sub.x) from the flue gas prior of discharge of the flue gas into the atmosphere and an apparatus for practicing the process.
Abstract translation:根据本发明的实践提供的方法,用于通过将一部分烟道气一氧化氮(NO)转化为二氧化氮(NO 2)来降低烟气中的NO与NO 2的摩尔比,以除去相关的硫氧化物(SO x )和烟道气排放到大气中之前的烟气中的氮(NOx)和用于实施该过程的装置。
Abstract:
This invention relates to a method for catalyzing the reactionsQZ+H.sub.2 X.fwdarw.QZX (1) psandQZX.fwdarw.QZ+H.sub.2 X (2)wherein Q=C or N;Z=O or S;X=O, S, NH or NR;R=C.sub.1 to C.sub.8 alkyl which may be linear, branched or cyclized,which comprises:contacting at least one polydentate nitrogen-containing chelating agent complexed with a metal atom with the reactants of one of said reactions, wherein said contacting takes place in the presence of a means for oxidizing when reaction (1) is catalyzed and in the presence of a means for reducing when reaction (2) is catalyzed.
Abstract translation:本发明涉及一种催化反应QZ + H2X→QZX(1)ps和QZX→QZ + H2X(2)的方法,其中Q = C或N; Z = O或S; X = O,S,NH或NR; R = C1至C8烷基,其可以是直链,支链或环化的,其包括:使与金属原子络合的至少一种多齿含氮螯合剂与所述反应之一的反应物接触,其中所述接触在存在下进行 当催化反应(1)时和在反应(2)被催化时还原反应的手段的存在下,氧化的手段。
Abstract:
This invention is based on the factors that both oxygen gas and nitrous oxides as gas are paramagnetic; as well as are quite soluble in saturated halogenated hydrocarbon liquids; whereas nitrogen is not paramagnetic; thus providing a means of separation of the oxygen and nitrous oxide from the nitrogen by high intensity magnetic forces created by an electromagnet.The absorber liquid, saturated with dissolved oxygen and nitrous oxides, or ammonia is then ozonated using the solvent or absorber liquid dielectric as the dielectric in an ozone generator.The effluent is stripped of nitric oxide with water to form nitric acid or by reduced pressure to recover nitric oxide.
Abstract:
A process for the oxidation of carbon monoxide to carbon dioxide with an inorganic oxidizing agent selected from the group consisting of water, nitric oxide and sulfur dioxide, which comprises combining the carbon monoxide with a predetermined amount of said oxidizing agent to give at least a stoichiometric amount of the oxidizing agent for the oxidation of the carbon monoxide to carbon dioxide, and passing the mixture over a novel ceramic catalyst at an elevated temperature.
Abstract:
In removing nitrogen oxide from a gas containing it, the gas is passed through a region where at least one of calcium sulfate and calcium hydroxide coexists with powerful oxidation agents such as sodium chlorite, potassium permanganate, etc. thereby removing the nitrogen oxide, mainly nitrogen monoxide, from the gas. This method is very effective in purifying exhaust gases resulting from burning operations, since 80 to 90% or more of the nitrogen oxide contained in the exhaust gases is nitrogen monoxide. In addition, this method is also effective in purifying indoor air.