摘要:
An apparatus and method for an enhanced thermally conductive package for high powered semiconductor devices. The package includes a semiconductor die having an active surface and a non-active surface and a metal layer formed on the non-active surface of the die. The package is intended to be mounted onto a metal pad provided on a printed circuit board. A solder is used to affix the metal layer on the non-active surface of the die to the metal pad of the printed circuit board. The interface between the die and the printed circuit board thus includes just three metal layers, including the non-active surface of the die, the solder, and the metal pad on the printed circuit board. The reduced number of metal layers improves heat dissipation and thermal conductivity of the package.
摘要:
In one embodiment, a Schottky diode structure comprises a Schottky barrier layer in contact with a semiconductor material through a Schottky contact opening. A conductive ring is formed adjacent the Schottky contact opening and is separated from the semiconductor material by a thin insulating layer. Another insulating layer is formed overlying the structure, and a contact opening is formed therein. The contact opening is wider than the Schottky contact opening and exposes portions of the conductive ring. A Schottky barrier metal is formed in contact with the semiconductor material through the Schottky contact opening, and is formed in further+contact with the conductive ring.
摘要:
A power module includes a power semiconductor, a non-power semiconductor, one resin substrate and a cooling device. The power semiconductor and the non-power semiconductor configure a power supply circuit for performing power conversion. Both the power semiconductor and the non-power semiconductor are mounted on the resin substrate. The cooling device is disposed in order to cool the power semiconductor.
摘要:
The present invention relates to a device for electrostatic discharge protection (ESD). According to an embodiment of the present invention, a device for electrostatic discharge protection includes a semiconductor substrate, a plurality of field oxide films formed in predetermined regions on the semiconductor substrate, a gate formed in a predetermined region on the semiconductor substrate between the field oxide films, a well pick-up region formed in a predetermined region on the semiconductor substrate between the field oxide films, a source formed in a predetermined region on the semiconductor substrate between the field oxide film and the gate, a drain drift region formed in a predetermined region on the semiconductor substrate between the gate and the field oxide film, a drain active region of a concentration higher than that of the drain drift region, the drain active region being formed in the drain drift region, and an oxide film formed on the semiconductor substrate on a boundary of the drain drift region and the drain active region. Accordingly, the current concentrated on the surface of the device can be uniformly distributed over the entire device.
摘要:
A compact, inexpensive static induction thyristor (SIThy) which is less likely to be broken down at a high voltage rise-up rate during operation and which is used in a high-voltage pulse generator capable of generating a high-voltage short pulse is provided. Thicknesses and impurity concentrations of a base region and a buffer region are determined such that a peak voltage obtained by a peak current at which a punch-through state is brought about does not exceed a breakdown voltage of the SIThy. Such design can achieve an SIThy having a self protecting function of autonomously preventing its breakdown without compromising a turn-on performance in which the peak voltage does not drastically exceed the breakdown voltage of the SIThy even when the peak current increases. Further, a compact SIThy capable of generating a short pulse can be achieved by reducing a gate-channel current-carrying area to a minimum.
摘要:
An insulated gate silicon nanowire transistor amplifier structure is provided and includes a substrate formed of dielectric material. A patterned silicon material may be disposed on the substrate and includes at least first, second and third electrodes uniformly spaced on the substrate by first and second trenches. A first nanowire formed in the first trench operates to electrically couple the first and second electrodes. A second nanowire formed in the second trench operates to electrically couple the second and third electrodes. First drain and first source contacts may be respectively disposed on the first and second electrodes and a first gate contact may be disposed to be capacitively coupled to the first nanowire. Similarly, second drain and second source contacts may be respectively disposed on the second and third electrodes and a second gate contact may be disposed to be capacitively coupled to the second nanowire.
摘要:
An electronic module has a heat sink with an upper surface and a lower surface, a plurality of leads arranged adjacent the heat sink and at least one circuit element with two vertical semiconductor power switches. The two vertical semiconductor power switches of each circuit element are arranged in a stack and are configured to provide a half-bridge circuit having a node defining an output. The first vertical semiconductor power switch of each of the circuit elements is mounted on the upper surface of the heat sink by an electrically conductive layer such that the lower surface of the heat sink provides the ground contact area of the electronic module.
摘要:
A semiconductor system (300) has one or more packaged active subsystems (310, 330); each subsystem has a substrate with electrical contact pads and one or more semiconductor chips stacked on top of each other, assembled on the substrate. The system further has a packaged passive subsystem (320) including a substrate with electrical contacts and passive electrical components, such as resistors, capacitors, and indictors. The passive subsystem is stacked with the active subsystems and connected to them by solder bodies.
摘要:
An organic photo-detecting field-effect device is presented, the device comprising a first layer comprising an organic semi-conducting material, the first layer acting as an accumulation layer and as a charge transport layer for a first type of charge carriers, and a second layer comprising a second material, the second layer acting as a an accumulation layer for a second type of charge carriers. Charges collected in the second layer influence the charge transport in the first layer. The second material may be an organic semi-conducting material or a metal. At the interface between the first layer and the second layer a heterojunction is formed in the case of an organic semi-conducting second material, and a Schottky barrier is formed in the case of a metal second material, giving rise to an efficient exciton splitting. Different geometries and operation modes facilitating the removal of the collected photo-generated charge carriers during the reset period of the device are presented. Furthermore, a method for operating an organic photo-detecting field-effect device is provided.
摘要:
A transistor and a method of fabricating the transistor are provided. The transistor includes a semiconductor material comprising drain regions and source regions formed in alternating rows or columns. The transistor also includes polysilicon chains overlaying the top of the semiconductor material, disconnected from and substantially parallel to one another, and separating the drain regions from the source regions. The method includes providing a semiconductor material, growing a first insulating layer on top of the semiconductor material, depositing a polysilicon layer on top of the first insulating layer, defining a plurality of chains in the polysilicon layer, the plurality of chains being disconnected from and substantially parallel to one another, and forming a plurality of drain regions and a plurality of source regions in the semiconductor material in alternating rows or columns. The plurality of chains separates the plurality of drain regions from the plurality of source regions.