Abstract:
A flat display apparatus provided with emitter electrodes for emitting electrons and gate electrodes for controlling the electrons emitted from the emitter electrodes, the emitter electrodes and the gate electrodes being formed on the same plane at positions facing a fluorescent screen.
Abstract:
An edge emitter display device is provided comprising an anode (1) and a cathode (2). Cathode (2) is situated at a level above and laterally displaced from anode (1), providing an opening for a window above anode (1). Cathode (2) has an emitting edge (4) which is operable to emit field electrons when a positive voltage is applied to anode (1) with respect to cathode (2). A phosphor layer is disposed above anode (1) and below the level of cathode (2) and is operable to luminesce when struck with the electrons emitted from the emitting edge (4).
Abstract:
An electron accelerator includes a vacuum chamber having an electron beam exit window. An electron generator is positioned within the vacuum chamber for generating electrons. A housing surrounds the electron generator and has a first series of openings formed in the housing between the electron generator and the exit window for allowing electrons to accelerate from the electron generator out the exit window in an electron beam when a voltage potential is applied between the housing and the exit window. The housing also has a second series and third series of openings formed in the housing on opposite sides of the electron generator for causing electrons to be uniformly distributed across the electron beam by flattening electrical field lines between the electron generator and the exit window.
Abstract:
A field emission display device of the type driven on a high anode voltage to accelerate effectively emitted electrons to the anode, thus providing high brightness as well as no leakage of glowed light. Cone emitters are formed on the cathode electrode laying on a cathode substrate. An insulating layer as well as first gate electrodes are formed on the portions where the emitters are not formed. Another insulating layer if formed on the first gate electrodes. Second gate electrodes (or focusing electrodes) with openings are formed over the first gate electrodes. Plural lines of the emitters are formed in parallel in the emitter area corresponding one pixel. The emitters are aligned to each of the openings. An anode voltage of 2kV to 5kV is applied to the anode electrode (not shown). The electrons from the emitters are focused by the focusing electrode and the reaches the anode electrode.
Abstract:
0504221609 Nanometer-scale field emitter tips are fabricated on a single crystal silicon substrate and an optically active semiconductive material is deposited on the tip. A bias voltage is connected between the semiconductor and the substrate to cause the optically active material to emit light.
Abstract:
A flat screen field emission cathode is disclosed including microtips individually protected by means of a series electrical coupling with a dipole consisting of a depletion mode field effect transistor. The current-voltage characteristic of such a dipole is not linear. These dipoles can be obtained such that the protection threshold and current emission level, and therefore the brilliance of the screen, can be altered globally (on all tips at once) solely by acting on the biasing of the substrate common to these dipoles, or groups of dipoles.
Abstract:
A field emission device capable of facilitating manufacturing thereof. A cathode substrate is formed on the same plane thereof with gate terminals and cathode electrode each having an end acting as a cathode terminal, on which an insulating layer is arranged. The insulating layer is formed thereon with gate lines 8, which are connected to the gate terminals through a conductive film deposited in contact holes formed during formation of the gate electrodes.
Abstract:
An imaging apparatus for providing an image from a display to an observer, comprising: a display generating an optical output, an imaging surface member constructed and arranged for viewing by said observer, and a scanning mirror/lens assembly optically interposed between the display and the imaging surface member, and constructed and arranged to motively repetitively scan the display, generate a scanned image, and transmit the scanned image to the imaging surface member, for viewing of the scanned image. Various field emitter display designs and subassemblies are described, which may be usefully employed in such imaging apparatus.
Abstract:
An electron emitter plate (110) for an FED image display has an extraction (gate) electrode (22) spaced by an insulating spacer (125) from a cathode electrode including a conductive mesh (18). Arrays of microtips (14) are located in mesh spacings (16), within apertures (26) formed in extraction electrode (22) and subcavities (141) formed through apertures (26) in insulating spacer (125). Subcavities (141a) are open to row-adjacent and column-adjacent subcavities (141b, 141c) to form larger main cavities (144). Posts (143) of insulating spacer (125) separate diagonally-adjacent cavities (141d). Subcavities (141) are formed by over-etching a layer of insulating spacer material (25) through apertures (26) before or after forming microtips (14) through the same apertures (26). Over-etching reduces the dielectric constant factor of gate-to-cathode capacitance in the finished structure.
Abstract:
An electron beam source includes a cathode having an electron emission surface including an active area for emission of electrons and a cathode shield assembly including a conductive shield disposed in proximity to the electron emission surface of the cathode. The shield has an opening aligned with the active area. The electron beam source further includes a device for stimulating emission of electrons from the active area of the cathode, electron optics for forming the electrons into an electron beam and a vacuum enclosure for maintaining the cathode at high vacuum. The cathode may be a negative electron affinity photocathode formed on a light-transmissive substrate. The shield protects non-emitting areas of the emission surface from contamination and inhibits cathode materials from contaminating components of the electron beam source. The cathode may be moved relative to the opening in the shield so as to align an new active area with the opening. Getter materials and sources of activation material may be incorporated into the shield assembly.