Abstract:
A method for data storage includes reading from a memory device data that is stored in a group of memory cells as respective analog values, and classifying readout errors in the read data into at least first and second different types, depending on zones in which the analog values fall. A memory quality that emphasizes the readout errors of the second type is assigned to the group of the memory cells, based on evaluated numbers of the readout errors of the first and second types.
Abstract:
A decoder includes circuitry and a soft decoder. The circuitry is configured to receive channel hard decisions for respective bits of a Generalized Low-Density Parity Check (GLDPC) code word that includes multiple component code words, including first and second component code words having one or more shared bits, to schedule decoding of the GLDPC code word, and following the decoding, to output the decoded GLDPC code word. The soft decoder is configured to receive the channel hard decisions corresponding to the first component code word, to further receive soft reliability measures that were assigned to the shared bits in decoding the second component code word, and to decode the first component code word based on the channel hard decisions and the soft reliability measures.
Abstract:
A method includes, in a storage system that includes multiple memory devices, holding a definition of a given type of storage command. Multiple storage commands of the given type are executed in the memory devices, such that an actual current consumption of each storage command deviates from a nominal current waveform defined for the given type by no more than a predefined deviation, and such that each storage command is preceded by a random delay.
Abstract:
A method for data storage includes, in a memory that includes multiple memory blocks, specifying at a first time a first over-provisioning overhead, and storing data in the memory while retaining in the memory blocks memory areas, which do not hold valid data and whose aggregated size is at least commensurate with the specified first over-provisioning overhead. Portions of the data from one or more previously-programmed memory blocks containing one or more of the retained memory areas are compacted. At a second time subsequent to the first time, a second over-provisioning overhead, different from the first over-provisioning overhead, is specified, and data storage and data portion compaction is continued while complying with the second over-provisioning overhead.
Abstract:
A method for data storage includes storing data in a group of memory cells, by encoding the data using at least an outer code and an inner code, and optionally inverting the encoded data prior to storing the encoded data in the memory cells. The encoded data is read from the memory cells, and inner code decoding is applied to the read encoded data to produce a decoding result. At least part of the read data is conditionally inverted, depending on the decoding result of the inner code.
Abstract:
A method for data storage includes storing data in a group of memory cells, by encoding the data using at least an outer code and an inner code, and optionally inverting the encoded data prior to storing the encoded data in the memory cells. The encoded data is read from the memory cells, and inner code decoding is applied to the read encoded data to produce a decoding result. At least part of the read data is conditionally inverted, depending on the decoding result of the inner code.
Abstract:
A method for data storage includes encoding each of multiple data items individually using a first Error Correction Code (ECC) to produce respective encoded data items. The encoded data items are stored in a memory. The multiple data items are encoded jointly using a second ECC, so as to produce a code word of the second ECC, and only a part of the code word is stored in the memory. The stored encoded data items are recalled from the memory and the first ECC is decoded in order to reconstruct the data items. Upon a failure to reconstruct a given data item from a respective given encoded data item by decoding the first ECC, the given data item is reconstructed based on the part of the code word of the second ECC and on the encoded data items other than the given encoded data item.
Abstract:
Methods for Error Correction Code (ECC) decoding include producing syndromes from a set of bits, which represent data that has been encoded with the ECC. An Error Locator Polynomial (ELP) is generated based on the syndromes. At least some of the ELP roots are identified, and the errors indicated by these roots are corrected. Each syndrome may be produced by applying to the bits vector operations in a vector space. Each syndrome is produced by applying vector operations using a different basis of the vector space. The ELP may be evaluated on a given field element by operating on ELP coefficients using serial multipliers, wherein each serial multiplier performs a sequence of multiplication cycles and produces an interim result in each cycle. Responsively to detecting at least one interim result indicating that the given element is not an ELP root, the multiplication cycles are terminated before completion of the sequence.
Abstract:
A method for operating a memory includes storing data in a plurality of analog memory cells that are fabricated on a first semiconductor die by writing input storage values to a group of the analog memory cells. After storing the data, multiple output storage values are read from each of the analog memory cells in the group using respective, different threshold sets of read thresholds, thus providing multiple output sets of the output storage values corresponding respectively to the threshold sets. The multiple output sets of the output storage values are preprocessed by circuitry that is fabricated on the first semiconductor die, to produce preprocessed data. The preprocessed data is provided to a memory controller, which is fabricated on a second semiconductor die that is different from the first semiconductor die. so as to enable the memory controller to reconstruct the data responsively to the preprocessed data.
Abstract:
A method for data storage includes defining a first programming scheme that programs a group of analog memory cells while reducing interference caused by at least one memory cell that neighbors the group, and a second programming scheme that programs the group of the analog memory cells and does not reduce all of the interference reduced by the first programming scheme. One of the first and second programming schemes is selected based on a criterion defined with respect to the analog memory cells. Data is stored in the group of the analog memory cells using the selected programming scheme.