Abstract:
An apparatus for minimizing deposition in an exhaust line of a substrate processing chamber. The apparatus includes first and second electrodes having opposing surfaces that define a fluid conduit between them. The fluid conduit includes an inlet, an outlet and a collection chamber between the inlet and the outlet. The apparatus is connected at its inlet to receive the exhaust of the substrate processing chamber. The collection chamber is structured and arranged to collect particulate matter flowing through the fluid conduit and to inhibit egress of the particulate matter from the collection chamber. A plasma generation system supplies power to the electrodes to form a plasma from etchant gases within the fluid conduit. Constituents from the plasma react with the particulate matter collected in the collection chamber to form gaseous products that may be pumped out of the fluid conduit. The apparatus may further include an electrostatic collector to enhance particle collection in the collection chamber and to further inhibit egress of the particulate matter.
Abstract:
A method and apparatus for forming thin copolymer layers having low dielectric constants on semiconductor substrates includes in situ formation of p-xylylenes, or derivatives thereof, from solid or liquid precursors such as cyclic p-xylylene dimer, p-xylene, 1,4-bis(formatomethyl)benzene, or 1,4-bis(N-methyl-aminomethyl)benzene. P-xylylene is copolymerized with a comonomer having labile groups that are converted to dispersed gas bubbles after the copolymer layer is deposited on the substrate. Preferred comonomers comprise diazocyclopentadienyl, diazoquinoyl, formyloxy, or glyoxyloyloxy groups.
Abstract:
A silicon oxide film is deposited on a substrate by first introducing a process gas into a chamber. The process gas includes a gaseous source of silicon (such as silane), a gaseous source of fluorine (such as SiF.sub.4), a gaseous source of oxygen (such as nitrous oxide), and a gaseous source of nitrogen (such as N.sub.2). A plasma is formed from the process gas by applying a RF power component. Deposition is carried out at a rate of at least about 1.5 .mu.m/min. The resulting FSG film is stable and has a low dielectric constant.
Abstract:
An apparatus and methods for an upgraded CVD system that provides a plasma for efficiently cleaning a chamber, according to a specific embodiment. Etching or depositing a layer onto a substrate also may be achieved using the upgraded CVD system of the present invention. In a specific embodiment, the present invention provides an easily removable, conveniently handled, and relatively inexpensive microwave plasma source as a retrofit for or a removable addition to existing CVD apparatus. In a preferred embodiment, the remote microwave plasma source efficiently provides a plasma without need for liquid-cooling the plasma applicator tube. In another embodiment, the present invention provides an improved CVD apparatus or retrofit of existing CVD apparatus capable of producing a plasma with the ability to efficiently clean the chamber when needed.
Abstract:
The present invention provides a remote plasma source mountable on a process chamber and connectable on one end to a gas inletting system and on the other end to a gas distribution system disposed in a process chamber. Preferably, a conventional microwave generator is utilized to deliver microwaves into a remote chamber to excite a gas passed therethrough into an excited state.
Abstract:
A substrate processing system including a vacuum chamber; a pedestal which holds a substrate during processing; and a gas distribution structure which during processing is located adjacent to and distributes a process gas onto a surface of the substrate that is held on the pedestal for processing. The gas distribution structure includes a gas distribution faceplate including a plurality of gas distribution holes formed therethrough, wherein the holes of at least a first set of the plurality of holes pass through the faceplate at angles other than perpendicular to the surface of substrate.
Abstract:
The present invention provides an iodine-based solution, and a method of using that solution, which sterilizes tissue implants without denaturing the proteins in the implant and without inducing calcification of the implant in vivo. Preferably, the tissue implants sterilized using the present invention are fixed without using glutaraldehyde. Most preferably, the tissue implants are fixed by photooxidation.
Abstract:
A watch bezel provides a GMT function and a count-up time-tracking function. The watch bezel includes a first set of indicia to indicate 24 hours associated with the GMT function of the watch and a second set of indicia to indicate 60 minutes in an hour. When mounted or attached to the watch casing or body, the bezel is rotatable in the clockwise direction and in the counter-clockwise direction. The watch bezel enables a user to read or set the time associated with a secondary time zone without adjusting any hands on the watch. The second set of indicia comprises a plurality of incremental minute markers and allows a user to track elapsed time. The capability of tracking elapsed time allows the watch to be used in activities that require tracking of elapsed time such as diving or other sporting events.
Abstract:
Embodiments of a plasma generator apparatus for ashing a work piece are provided. The apparatus includes a container adapted for continuous gas flow there through from an inlet end to an outlet end thereof. The container is fabricated of a dielectric material and adapted for ionization therein of a portion of at least one component of gas flowing therethrough. A gas flow distributor is configured to direct gas flow to a region within the container and a coil surrounds at least a portion of side walls of the container adjacent the region of the container to which the gas flow distributor directs gas flow. A radio frequency generator is coupled to the coil.