摘要:
A diagnostic sub-routine for use by the control system of a gas discharge laser is disclosed. The sub-routine provides a prediction of the time remaining, based upon real-time laser system operations, for each pulse-limited sub-system within the laser. The sub-routine utilizes a calculated average pulse repetition rate over a user-defined time interval as the basis for predicting the time remaining, under current operating conditions, until the end-of-life for each pulse-limited sub-system; and continually updates the time prediction to account for changes in the lasers operation. The predicted time is reported to the operator to allow advanced scheduling of routine maintenance.
摘要:
A housing in a laser system encloses a cathode and a displaced anode and gases ionizable and reactive chemically when a voltage pulse produces a cathode-anode electrical discharge. Moving air cools the components (capacitors, thyratron and triggering circuitry) for producing the voltage pulses. The laser gas temperature is continuously regulated at a particular value whether or not there is an electrical discharge. The concentration of one of the gases in the chamber is regulated to values alternately on opposite sides of an optimal value to provide an optimal energy in each chemical reaction of the gases. The gases are recirculated as by a fan driven on a shaft by a pair of motors and are filtered during such recirculation. The shaft speed is regulated at a particular value and the motor currents are regulated to be equal. Any ozone formed in a compartment holding the high voltage terminals is purged by passing a neutral gas (nitrogen) through the compartment to the atmosphere. The neutral gas is passed into the housing through a hose which also holds a high voltage wire in insulated relationship to other electrical components. A collar arrangement at one wire end provides for the introduction of voltage from the collar to the anode of the thyratron with the hose coupled to the housing and grounds the collar with the wire decoupled from the housing. The different high voltage components are sequentially tested for their operability by a system and method unique to this invention.
摘要:
A high energy, high repetition rate workpiece surface heating apparatus is disclosed which comprise a XeF laser producing a laser output light pulse beam, an optical system narrowing the laser output light pulse beam in the short axis of the laser output light pulse beam and expanding the laser output light pulse beam to form in a long axis of the beam a workpiece covering extent of the long axis, the optical system focuses the laser output light pulse beam at a field stop with a magnification sufficient to maintain an intensity profile that has sufficiently steep sidewalls to allow the field stop to maintain a sufficiently steep beam profile at the workpiece.
摘要:
A laser crystallization apparatus and method are disclosed for selectively melting a film such as amorphous silicon that is deposited on a substrate. The apparatus may comprise an optical system for producing stretched laser pulses for use in melting the film. In still another aspect of an embodiment of the present invention, a system and method are provided for stretching a laser pulse. In another aspect, a system is provided for maintaining a divergence of a pulsed laser beam (stretched or non-stretched) at a location along a beam path within a predetermined range. In another aspect, a system may be provided for maintaining the energy density at a film within a predetermined range during an interaction of the film with a shaped line beam.
摘要:
A high energy, high repetition rate workpiece surface heating apparatus is disclosed which comprise a XeF laser producing a laser output light pulse beam, an optical system narrowing the laser output light pulse beam in the short axis of the laser output light pulse beam and expanding the laser output light pulse beam to form in a long axis of the beam a workpiece covering extent of the long axis, the optical system focuses the laser output light pulse beam at a field stop with a magnification sufficient to maintain an intensity profile that has sufficiently steep sidewalls to allow the field stop to maintain a sufficiently steep beam profile at the workpiece.
摘要:
An oscillator-amplifier gas discharge laser system and method is disclosed which may comprise a first laser unit which may comprise a first discharge region which may contain an excimer or molecular fluorine lasing gas medium; a first pair of electrodes defining the first discharge region containing the lasing gas medium, a line narrowing unit for narrowing a spectral bandwidth of output laser light pulse beam pulses produced in said first discharge region; a second laser unit which may comprise a second discharge chamber which may contain an excimer or molecular fluorine lasing gas medium; a second pair of electrodes defining the second discharge region containing the lasing gas medium; a pulse power system providing electrical pulses to the first pair of electrodes and to the second pair of electrodes producing gas discharges in the lasing gas medium between the respective first and second pair of electrodes, and laser parameter control mechanism modifying a selected parameter of a selected laser output light pulse beam pulse produced by said gas discharge laser system by controlling the timing of the occurrence of the gas discharge between the first pair of electrodes and the occurrence of the gas discharge between the second pair of electrodes.
摘要:
A high energy, high repetition rate workpiece surface heating method and apparatus are disclosed which may cmprise a pulsed XeF laser operating at or above 4000 Hz and producing a laser output light pulse beam at a center wavelength of about 351 nm; an optical system narrowing the laser output light pulse beam to less than 20 μm in a short axis of the laser output light pulse beam and expanding the laser output light pulse beam to form in a long axis of the beam a workpiece covering extent of teh long axis; the optical system including a field stop intermediate the laser and the workpiece; the workpiece comprising a layer to be heated; wherein the optical system focuses the laser output light pulse beam at a field stop with a magnification sufficient to maintain an intensity profile that has sufficiently steep sidewalls to allow the field stop to maintain a sufficiently steep beam profile at the workpiece without blocking the beam profile at too high an intensity level. 2. The apparatus may also have a high average power in the laser ouput light pulse beam as delivered to the workpiece and a a linebow correction mechanism in a short axis optical assembly. The linebow correction mechanism may comprise a plurality of weak cross cylinders. The system may comprise a catadioptric projection system. The linewidth due to laser diffraction and divergence may be less than geometric limitations. The system may project adjacent peaks of the nominal XeF spectrum to improve overall depth of focus through the separate center wavelengths of each respective adjacent peak having a different focal plane at the workpiece. The system may comprise a linebow is correction mechanism within a field stop optical assembly correcting linebow at the field stop plane and within a workpiece projection optical assembly correcting linebow at the workpiece plane.
摘要:
An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in an ArF excimer laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses. The master oscillator is equipped with a line narrowing package having a very fast tuning mirror capable of controlling centerline wavelength on a pulse-to-pulse basis at repetition rates of 4000 Hz or greater to a precision of less than 0.2 pm.
摘要:
Electric discharge laser with active chirp correction. This application discloses techniques for moderating and dispensing these pressure waves. In some lasers small predictable patterns remain which can be substantially corrected with active wavelength control using relatively slow wavelength control instruments of the prior art. In a preferred embodiment a simple learning algorithm is described to allow advance tuning mirror adjustment in anticipation of the learned chirp pattern. Embodiments include stepper motors having very fine adjustments so that size of tuning steps are substantially reduced for more precise tuning. However, complete elimination of wavelength chirp is normally not feasible with structural changes in the laser chamber and advance tuning; therefore, Applicants have developed equipment and techniques for very fast active chirp correction. Improved techniques include a combination of a relatively slow stepper motor and a very fast piezoelectric driver. In another preferred embodiment chirp correction is made on a pulse-to-pulse basis where the wavelength of one pulse is measured and the wavelength of the next pulse is corrected based on the measurement. This correction technique is able to function at repetition rates as rapid as 2000 Hz and greater.
摘要:
A high repetition rate, compact, modular gas discharge, ultraviolet laser. The laser is useful as a light source for very rapid inspections of wafers in an integrated circuit fabrication process. It is also useful for reticle writing at very rapid rates. A preferred embodiment operates at pulse repetition rates of 1000 to 4000 Hz and is designed for round-the-clock production line operation. This preferred embodiment comprises a pulse control unit which controls the timing of pulses to an accuracy of less than 4 nanoseconds. Preferred embodiments of this gas discharge laser can be configured to operate with a KrF gas mixture, an ArF gas mixture or an F2 gas mixture, each with an approximate buffer gas, producing 248 nm, 197 nm or 157 nm ultraviolet light pulses.