TECHNIQUES FOR IMPROVING GATE CONTROL OVER TRANSISTOR CHANNEL BY INCREASING EFFECTIVE GATE LENGTH
    56.
    发明申请
    TECHNIQUES FOR IMPROVING GATE CONTROL OVER TRANSISTOR CHANNEL BY INCREASING EFFECTIVE GATE LENGTH 审中-公开
    通过增加有效闸门长度来改善晶体管通道的栅极控制技术

    公开(公告)号:US20160240534A1

    公开(公告)日:2016-08-18

    申请号:US15024258

    申请日:2013-12-18

    Abstract: Techniques are disclosed for improving gate control over the channel of a transistor, by increasing the effective electrical gate length (Leff) through deposition of a gate control layer (GCL) at the interfaces of the channel with the source and drain regions. The GCL is a nominally undoped layer (or substantially lower doped layer, relative to the heavily doped S/D fill material) that can be deposited when forming a transistor using replacement S/D deposition. The GCL can be selectively deposited in the S/D cavities after such cavities have been formed and before the heavily doped S/D fill material is deposited. In this manner, the GCL decreases the source and drain underlap (Xud) with the gate stack and further separates the heavily doped source and drain regions. This, in turn, increases the effective electrical gate length (Leff) and improves the control that the gate has over the channel.

    Abstract translation: 公开了通过在沟道与源极和漏极区的界面处沉积栅极控制层(GCL)来增加有效电栅极长度(Leff)来改善晶体管的沟道上的栅极控制的技术。 GCL是在使用替换S / D沉积形成晶体管时可以沉积的名义上未掺杂的层(或相对于重掺杂的S / D填充材料的基本上较低的掺杂层)。 在形成这种空穴之后并且沉积重掺杂的S / D填充材料之前,可以将GCL选择性地沉积在S / D腔中。 以这种方式,GCL通过栅极堆叠减少源极和漏极底层(Xud),并进一步分离重掺杂的源极和漏极区域。 这又增加了有效电门长度(Leff),并且改善了栅极通过通道的控制。

    CONTACT RESISTANCE REDUCTION EMPLOYING GERMANIUM OVERLAYER PRE-CONTACT METALIZATION
    58.
    发明申请
    CONTACT RESISTANCE REDUCTION EMPLOYING GERMANIUM OVERLAYER PRE-CONTACT METALIZATION 审中-公开
    接触电阻减少使用德国OVERLAYER PRE-CONTACT METALIZATION

    公开(公告)号:US20150206942A1

    公开(公告)日:2015-07-23

    申请号:US14673143

    申请日:2015-03-30

    Abstract: Techniques are disclosed for forming transistor devices having reduced parasitic contact resistance relative to conventional devices. The techniques can be implemented, for example, using a standard contact stack such as a series of metals on, for example, silicon or silicon germanium (SiGe) source/drain regions. In accordance with one example such embodiment, an intermediate boron doped germanium layer is provided between the source/drain and contact metals to significantly reduce contact resistance. Numerous transistor configurations and suitable fabrication processes will be apparent in light of this disclosure, including both planar and non-planar transistor structures (e.g., FinFETs), as well as strained and unstrained channel structures. Graded buffering can be used to reduce misfit dislocation. The techniques are particularly well-suited for implementing p-type devices, but can be used for n-type devices if so desired.

    Abstract translation: 公开了用于形成相对于常规器件具有降低的寄生接触电阻的晶体管器件的技术。 这些技术可以例如使用例如硅或硅锗(SiGe)源极/漏极区域上的一系列金属的标准接触堆叠来实现。 根据这种实施例的一个示例,在源极/漏极和接触金属之间提供中间硼掺杂锗层以显着降低接触电阻。 根据本公开,包括平面和非平面晶体管结构(例如,FinFET)以及应变和非限制的通道结构,许多晶体管配置和合适的制造工艺将是显而易见的。 分级缓冲可用于减少错配错位。 这些技术特别适用于实现p型器件,但如果需要,可以用于n型器件。

Patent Agency Ranking