NON-LITHOGRAPHIC LINE PATTERN FORMATION
    55.
    发明申请
    NON-LITHOGRAPHIC LINE PATTERN FORMATION 有权
    非线性线图形成

    公开(公告)号:US20160329214A1

    公开(公告)日:2016-11-10

    申请号:US15212972

    申请日:2016-07-18

    Abstract: A metal layer is deposited over an underlying material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation and/or nitridation. A hard mask portion is formed over the metal layer. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. The sequence of a surface pull back of the hard mask portion, trench etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a line pattern having a spacing that is not limited by lithographic minimum dimensions.

    Abstract translation: 金属层沉积在下层材料层上。 金属层包括可通过等离子体氧化和/或氮化转化为含介电金属的化合物的元素金属。 在金属层上形成硬掩模部分。 进行等离子体氧化或氮化以将金属层的物理暴露表面转化为含介电金属的化合物。 重复将硬掩模部分的表面拉回序列,沟槽蚀刻,另一表面拉回和将顶表面转化为含介电金属的化合物,以形成具有不受光刻最小值限制的间隔的线图案 尺寸。

    NON-BRIDGING CONTACT VIA STRUCTURES IN PROXIMITY

    公开(公告)号:US20160035650A1

    公开(公告)日:2016-02-04

    申请号:US14884076

    申请日:2015-10-15

    Abstract: A first photoresist layer is patterned with a first pattern that includes an opening in a region between areas of two adjacent via holes to be formed. The opening in the first photoresist is transferred into a template layer to form a line trench therein. The lateral dimension of the trench is reduced by depositing a contiguous spacer layer that does not fill the trench completely. An etch-resistant material layer is conformally deposited and fills the trench, and is subsequently recessed to form an etch-resistant material portion filling the trench. A second photoresist layer is applied and patterned with a second pattern, which includes an opening that includes areas of two via holes and an area therebetween. A composite pattern of an intersection of the second pattern and the complement of the pattern of the etch-resistant material portion is transferred through the template layer.

    STI REGION FOR SMALL FIN PITCH IN FINFET DEVICES
    57.
    发明申请
    STI REGION FOR SMALL FIN PITCH IN FINFET DEVICES 审中-公开
    用于FINFET器件中的小熔点的STI区域

    公开(公告)号:US20150357328A1

    公开(公告)日:2015-12-10

    申请号:US14828551

    申请日:2015-08-18

    Abstract: The present invention relates generally to semiconductor devices, and particularly to fabricating a shallow trench isolation (STI) region in fin field effect transistors (FinFETs) having a small fin pitch. A structure is disclosed. The structure may include: a semiconductor substrate; a plurality of fins on the semiconductor substrate; a plurality of caps on the fins; an isolation layer on the semiconductor substrate and between the plurality of fins, the isolation layer having an upper surface that is substantially flush with an upper surface of the plurality of caps; an isolation trench in the semiconductor substrate; a fin trench where one of the plurality of fins and one of the plurality of caps have been removed; and insulating material in the isolation trench and the fin trench to form an isolation region, the isolation region having an upper surface that is substantially flush with the upper surface of the isolation layer.

    Abstract translation: 本发明一般涉及半导体器件,特别涉及制造鳍片间距小的鳍式场效应晶体管(FinFET)中的浅沟槽隔离(STI)区域。 公开了一种结构。 该结构可以包括:半导体衬底; 半导体衬底上的多个散热片; 翅片上的多个帽; 在所述半导体衬底上和所述多个鳍之间的隔离层,所述隔离层具有与所述多个帽的上表面基本齐平的上表面; 半导体衬底中的隔离沟槽; 其中所述多个翅片中的一个和所述多个帽中的一个已经被去除的翅片沟槽; 以及隔离沟槽和散热片沟槽中的绝缘材料以形成隔离区域,所述隔离区域具有与隔离层的上表面基本齐平的上表面。

    Electrically isolated SiGe fin formation by local oxidation
    60.
    发明授权
    Electrically isolated SiGe fin formation by local oxidation 有权
    通过局部氧化电隔离SiGe鳍形成

    公开(公告)号:US09093326B2

    公开(公告)日:2015-07-28

    申请号:US14058341

    申请日:2013-10-21

    Abstract: A silicon germanium alloy layer is formed on a semiconductor material layer by epitaxy. An oxygen impermeable layer is formed on the silicon germanium alloy layer. The oxygen impermeable layer and the silicon germanium alloy layer are patterned to form stacks of a silicon germanium alloy fin and an oxygen impermeable cap. A shallow trench isolation structure is formed by deposition, planarization, and recessing or an oxygen permeable dielectric material. An oxygen impermeable spacer is formed around each stack of a silicon germanium alloy fin and an oxygen impermeable cap. A thermal oxidation process is performed to convert a lower portion of each silicon germanium alloy fin into a silicon germanium oxide. During the thermal oxidation process, germanium atoms diffuse into unoxidized portions of the silicon germanium alloy fins to increase the germanium concentration therein.

    Abstract translation: 通过外延在半导体材料层上形成硅锗合金层。 在硅锗合金层上形成不透氧层。 对不透氧层和硅锗合金层进行图案化以形成硅锗合金翅片和不透氧盖的叠层。 通过沉积,平坦化和凹陷形成浅沟槽隔离结构或透氧介电材料。 在硅锗合金翅片和不透氧盖的每个堆叠周围形成不透氧隔离物。 进行热氧化处理以将每个硅锗合金翅片的下部转换成硅氧化锗。 在热氧化过程中,锗原子扩散到硅锗合金翅片的未氧化部分,以增加其中的锗浓度。

Patent Agency Ranking