摘要:
Systems and methods to suppress the formation of parasitic particles during the deposition of a III-V nitride film with, e.g., metal-organic chemical vapor deposition (MOCVD) are described. In accordance with certain aspects of the invention, a hotwall reactor design and methods associated therewith, with wall temperatures similar to process temperatures, so as to create a substantially isothermal reaction chamber, may generally suppress parasitic particle formation and improve deposition performance.
摘要:
Systems are disclosed for fabricating compound nitride semiconductor structures. The systems include a housing defining a processing chamber, a substrate holder disposed within the processing chamber, an NH3 source, a group-III precursor source, an ultraviolet source, and a CVD showerhead disposed over the substrate holder. The showerhead has a first plenum fluidicly coupled with the NH3 source, with the first plenum having channels fluidicly coupled with an interior of the processing chamber. The first plenum is optically coupled with the ultraviolet light source at an ultraviolet wavelength to receive light transmitted by the ultraviolet light source within the first plenum. The CVD showerhead also has a second plenum fluidicly coupled with the group-III precursor source, with the second plenum having channels fluidicly coupled with the interior of the processing chamber.
摘要:
Apparatus and methods are described for fabricating a compound nitride semiconductor structure. Group-III and nitrogen precursors are flowed into a first processing chamber to deposit a first layer over a substrate with a thermal chemical-vapor-deposition process. The substrate is transferred from the first processing chamber to a second processing chamber. Group-III and nitrogen precursors are flowed into the second processing chamber to deposit a second layer over the first layer with a thermal chemical-vapor-deposition process. The first and second group-III precursors have different group-III elements.
摘要:
Subwells are added to quantum wells of light emitting semiconductor structures to shift their emission wavelengths to longer wavelengths. Typical applications of the invention are to InGaAs, InGaAsSb, InP and GaN material systems, for example.
摘要:
The plasma-assisted metal-organic chemical vapor deposition (MOCVD) fabrication of a p-type group III-nitride material is described. For example, a method of fabricating a p-type group III-nitride material includes generating a nitrogen-based plasma. A nitrogen-containing species from the nitrogen-based plasma is reacted with a group III precursor and a p-type dopant precursor in a metal-organic chemical vapor deposition (MOCVD) chamber. A group III-nitride layer including p-type dopants is then formed above a substrate.
摘要:
Methods, semiconductor material stacks and equipment for manufacture of light emitting diodes (LEDs) with improve crystal quality. A growth stopper is deposited between nuclei for a group III-V material, such as GaN, to form a nano mask. The group III-V material is laterally overgrown from a region of the nuclei not covered by the nano mask to form a continuous material layer with reduced dislocation density in preparation for subsequent growth of n-type and p-type layers of the LED. The lateral overgrowth from the nuclei may further recover the surface morphology of the buffer layer despite the presence of the nano mask. Presence of the growth stopper may further result in void formation on a substrate side of an LED stack to improve light extraction efficiency.
摘要:
A method and apparatus are provided for monitoring and controlling substrate processing parameters for a cluster tool that utilizes chemical vapor deposition and/or hydride vapor phase epitaxial (HVPE) deposition. In one embodiment, a metal organic chemical vapor deposition (MOCVD) process is used to deposit a Group III-nitride film on a plurality of substrates within a processing chamber. A closed-loop control system performs in-situ monitoring of the Group III-nitride film growth rate and adjusts film growth parameters as required to maintain a target growth rate. In another embodiment, a closed-loop control system performs in-situ monitoring of film growth parameters for multiple processing chambers for one or more film deposition systems.
摘要:
Methods are provided of fabricating compound nitride semiconductor structures. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over a surface of a first substrate with a thermal chemical-vapor-deposition process. A second layer is deposited over a surface of a second substrate with the thermal chemical-vapor-deposition process using the first group-III precursor and the first nitrogen precursor. The first and second substrates are different outer substrates of a plurality of stacked substrates disposed within the processing chamber as a stack so that the first and second layers are deposited on opposite sides of the stack. Deposition of the first layer and deposition of the second layer are performed simultaneously.
摘要:
Methods are provided of fabricating a nitride semiconductor structure. A group-III precursor and a nitrogen precursor are flowed into a processing chamber to deposit a first layer over one side of the substrate with a thermal chemical-vapor-deposition process. A second layer is similarly deposited over an opposite side of the substrate using the group-III precursor and the nitrogen precursor. The substrate is cooled after depositing the first and second layers without substantially deforming a shape of the substrate.
摘要:
In accordance with the present invention, improved methods for reducing the dislocation density of nitride epitaxial films are provided. Specifically, an in-situ etch treatment is provided to preferentially etch the dislocations of the nitride epitaxial layer to prevent threading of the dislocations through the nitride epitaxial layer. Subsequent to etching of the dislocations, an epitaxial layer overgrowth is performed. In certain embodiments, the etching of the dislocations occurs simultaneously with growth of the epitaxial layer. In other embodiments, a dielectric mask is deposited within the etch pits formed at the dislocations prior to the epitaxial layer overgrowth.