Abstract:
The present invention relates generally to a new apparatus and method for forming cavities in semiconductor substrates without the necessity of using an insert. More particularly, the invention encompasses an apparatus and a method for fabricating cavities in semiconductor substrates wherein a coated membrane sheet is placed over the cavity prior to lamination and caused to conform to the contour of the cavity, thus preventing collapse of, or damage to, the cavity shelves during the lamination process. After the lamination process, the coated membrane is conveniently removed without causing damage to the cavity shelves or paste pull-outs.
Abstract:
The present invention relates generally to a new metal/magnetic-ceramic laminate with through-holes and process thereof. More particularly, the invention encompasses a new process for fabrication of a large area ceramic laminate magnet with a significant number of holes, integrated metal plate(s) and co-sintered electrodes for electron and electron beam control. The present invention also relates to a magnetic matrix display (MMD), and electron beam source, and methods of manufacture thereof.
Abstract:
A ceramic contact sheet and setter tile with controlled porosity is introduced, along with the method for making the same. The amount of porosity is controlled by the volume percentage, particle size, and particle shape of a fugitive phase which can be added to the original refractory material slurry used to fabricate setter tiles and contact sheets. The fugitive phase can be used independently to introduce porosity in setter tiles and contact sheets or in conjunction with partial densification. Since porosity is not solely dependent upon partial sintering, higher porosity levels can be achieved with less impact on subsequent mechanical properties of the resultant refractory material.
Abstract:
Disclosed is an electronic packaging substrate which includes a sintered ceramic body having at least one internal layer of wiring and at least one cooling channel internal to and integral with the sintered ceramic body for cooling a heat-generating electronic device placed on the sintered body. Also disclosed is a method of making the electronic packaging substrate.
Abstract:
Process for producing circuitized greensheets including multi-layer ceramic sub-laminates and composites comprising thin ceramic greensheets carrying and thin, fine line patterned conductive metal layers. The invention comprises releasably-supporting the thin greensheets on a temporary carrier support having an ablatable release layer, preferably over a patterned conductive layer, and filling the vias with conductive metal paste, whereby the thin greensheets are supported against warpage and distortion. The supported greensheets are formed as single layers, pairs and stacks thereof, as desired, and thereafter separated from the temporary support for use.
Abstract:
A ceramic composite body which includes high purity amorphous silica fibers in a ceramic matrix. The ceramic matrix may be a glass ceramic material, a borosilicate glass material or mixtures thereof.
Abstract:
The present invention provides a method for producing multilayered ceramic structures having copper-based conductors therein, wherein the onset of sintering of the copper-based conductor can be adjusted to approach or match that of the ceramic portion of the structure. In addition, methods are provided whereby the polymeric binder resin used in formation of the ceramic portion of the structure can be removed or burned-off, using oxygen-containing ambients, wherein the oxygen content is greater than 200 ppm, without oxidation of the copper-based conductors therein.