摘要:
Systems and methods for managing data input/output operations are described. In one aspect, a device driver identifies a data read operation generated by a virtual machine in a virtual environment. The device driver is located in the virtual machine and the data read operation identifies a physical cache address associated with the data requested in the data read operation. A determination is made regarding whether data associated with the data read operation is available in a cache associated with the virtual machine.
摘要:
The present invention generally relates to methods for producing MEMS or NEMS devices and the devices themselves. A thin layer of a material having a lower recombination coefficient as compared to the cantilever structure may be deposited over the cantilever structure, the RF electrode and the pull-off electrode. The thin layer permits the etching gas introduced to the cavity to decrease the overall etchant recombination rate within the cavity and thus, increase the etching rate of the sacrificial material within the cavity. The etchant itself may be introduced through an opening in the encapsulating layer that is linearly aligned with the anchor portion of the cantilever structure so that the topmost layer of sacrificial material is etched first. Thereafter, sealing material may seal the cavity and extend into the cavity all the way to the anchor portion to provide additional strength to the anchor portion.
摘要:
Systems and methods for managing data input/output operations are described that include virtual machines operating with a shared storage within a host. In such a system, a computer-implemented method is provided for dynamically provisioning cache storage while operating system applications continue to operate, including stalling the virtual machine's local cache storage operations, changing the provision of cache storage size; and resuming the operations of the virtual machine.
摘要:
A multi-level cache comprises a plurality of cache levels, each configured to cache I/O request data pertaining to I/O requests of a different respective type and/or granularity. A cache device manager may allocate cache storage space to each of the cache levels. Each cache level maintains respective cache metadata that associates I/O request data with respective cache address. The cache levels monitor I/O requests within a storage stack, apply selection criteria to identify cacheable I/O requests, and service cacheable I/O requests using the cache storage device.
摘要:
Embodiments discussed herein generally include methods of fabricating MEMS devices within a structure. The MEMS device may be formed in a cavity above the structure, and additional metallization may occur above the MEMS device. The cavity may be formed by depositing an encapsulating layer over the sacrificial layers that enclose the MEMS device. The encapsulating layer may then be etched to expose portions of the sacrificial layers. The sacrificial layers are exposed because they extend through the sidewalls of the encapsulating layer. Therefore, no release holes are etched through the top of the encapsulating layer. An etchant then removes the sacrificial layers to free the MEMS device and form the cavity and an opening through the sidewall of the encapsulating layer. Another encapsulating layer may then be deposited to seal the cavity and the opening.
摘要:
A capnometer adaptor includes a nanostructure sensor configured to selectively respond to a gaseous constituent of exhaled breath, such as to carbon dioxide. In certain embodiments, the adaptor includes an airway adaptor having at least one channel configured for the passage of respiratory gas; at least one nanostructure sensor in fluid communication with the passage, the sensor configured to selectively respond to at least one gaseous constituent of exhaled breath comprising carbon dioxide; and electronic hardware connected to the nanostructure sensor and configured to provide a signal indicative of a response of the sensor to the at least one gaseous constituent of exhaled breath. The sensor may be provided as a compact and solid-state device, and may be adapted for a variety of respiratory monitoring applications.
摘要:
A capnometer adaptor includes a nanostructure sensor configured to selectively respond to a gaseous constituent of exhaled breath, such as to carbon dioxide. In certain embodiments, the adaptor includes an airway adaptor having at least one channel configured for the passage of respiratory gas; at least one nanostructure sensor in fluid communication with the passage, the sensor configured to selectively respond to at least one gaseous constituent of exhaled breath comprising carbon dioxide; and electronic hardware connected to the nanostructure sensor and configured to provide a signal indicative of a response of the sensor to the at least one gaseous constituent of exhaled breath. The sensor may be provided as a compact and solid-state device, and may be adapted for a variety of respiratory monitoring applications.
摘要:
A nanoelectronic device includes a nanostructure, such as a nanotube or network of nanotube, disposed on a substrate. Nanoparticles are disposed on or adjacent to the nanostructure so as to operatively effect the electrical properties of the nanostructure. The nanoparticles may be composed of metals, metal oxides or salts and nanoparticles composed of different materials may be present. The amount of nanoparticles may be controlled to preserve semiconductive properties of the nanostructure, and the substrate immediately adjacent to the nanostructure may remain substantially free of nanoparticles. A method for fabricating the device includes electrodeposition of the nanoparticles using one of more solutions of dissolved ions while providing an electric current to the nanostructures but not to the surrounding substrate.
摘要:
A portable sensor device incorporates a low-power, nanostructure sensor coupled to a wireless transmitter. The sensor uses a nanostructure conducting channel, such as a nanotube network, that is functionalized to respond to a selected analyte. A measurement circuit connected to the sensor determines a change in the electrical characteristic of the sensor, from which information concerning the present or absence of the analyte may be determined. The portable sensor device may include a portable power source, such as a battery. It may further include a transmitter for wirelessly transmitting data to a base station.
摘要:
An automated method of rapidly producing customized 3D graphics images in which various user images and video are merged into 3D computer graphics scenes, producing hybrid images that appear to have been created by a computationally intensive 3D rendering process, but which in fact have been created by a much less computationally intensive series of 2D image operations. To do this, a 3D graphics computer model is rendered into a 3D graphics image using a customized renderer designed to automatically report on some of the renderer's intermediate rendering operations, and store this intermediate data in the form of metafilm. User images and video may then be automatically combined with the metafilm, producing a 3D rendered quality final image with orders of magnitude fewer computing operations. The process can be used to inexpensively introduce user content into sophisticated images and videos suitable for many internet, advertising, cell phone, and other applications.