Abstract:
A method for transferring a useful layer onto a carrier comprises formation of an embrittlement plane by implantation of light species into a first substrate in such a manner as to define the bounds of a useful layer between this plane and a surface of the first substrate, mounting of the carrier onto the surface of the first substrate so as to form an assembly to be fractured, and thermal fracture treatment of the first substrate along the embrittlement plane in such a manner as to transfer the useful layer onto the support. During the thermal fracture treatment, the degree of peripheral adhesion is reduced at the interface between the carrier and the first substrate.
Abstract:
A method for separating a structure from a substrate through electromagnetic irradiations (EI) belonging to a spectral range comprises the steps of a) providing the substrate, b) forming an absorbent separation layer on the substrate, c) forming the structure to be separated on the separation layer, d) exposing the separation layer to the electromagnetic irradiations (IE) via the substrate such that the separation layer breaks down under the effect of the heat stemming from the absorption, the method being notable in that it comprises a step b1) of forming a transparent thermal barrier layer on the separation layer, the exposure period and the thickness of the thermal barrier layer being adapted such that the temperature of the structure to be separated remains below a threshold during the exposure period, beyond which threshold, faults are likely to appear in the structure.
Abstract:
The disclosure relates to a process for treating a structure, the structure comprising, from its back side to its front side, a carrier substrate, an insulating layer and a useful layer, the useful layer having a free surface, the structure being placed in an atmosphere containing chemical species, the chemical species being capable of reacting chemically with the useful layer. This treatment process is noteworthy in that the useful layer is heated by a pulsed laser beam, the beam sweeping the free surface, the wavelength of the beam differing by, at most, plus or minus 15 nm from a central wavelength, the central wavelength being chosen so that the sensitivity of the reflectivity of the structure relative to the insulating layer is zero.
Abstract:
A method for transferring a useful layer onto a support includes the following processes: formation of a fragilization plane through the implantation of light species into a first substrate in such a way as to form a useful layer between this plane and a surface of the first substrate; application of the support onto the surface of the first substrate to form an assembly to be fractured having two exposed sides; thermal fragilization treatment of the assembly to be fractured; and initiation and self-sustained propagation of a fracture wave in the first substrate along the fragilization plane. At least one of the sides of the assembly to be fractured is in close contact, over a contact zone, with an absorbent element suitable for capturing and dissipating acoustic vibrations emitted during the initiation and/or propagation of the fracture wave.
Abstract:
The invention relates to a method for fabricating a substrate, comprising the steps of providing a donor substrate with at least one free surface, performing an ion implantation at a predetermined depth of the donor substrate to form an in-depth predetermined splitting area inside the donor substrate, and is characterized in providing a layer of an adhesive, in particular an adhesive paste, over the at least one free surface of the donor substrate. The invention further relates to a semiconductor structure comprising a semiconductor layer, and a layer of a ceramic-based and/or a graphite-based and/or a metal-based adhesive provided on one main side of the semiconductor layer.
Abstract:
A substrate for a surface acoustic wave device or bulk acoustic wave device, comprising a support substrate and an piezoelectric layer on the support substrate, wherein the support substrate comprises a semiconductor layer on a stiffening substrate having a coefficient of thermal expansion that is closer to the coefficient of thermal expansion of the material of the piezoelectric layer than that of silicon, the semiconductor layer being arranged between the piezoelectric layer and the stiffening substrate.
Abstract:
Substrates may include a useful layer affixed to a support substrate. A surface of the useful layer located on a side of the useful layer opposite the support substrate may include a first region and a second region. The first region may have a first surface roughness, may be located proximate to a geometric center of the surface, and may occupy a majority of an area of the surface. The second region may have a second, higher surface roughness, may be located proximate to a periphery of the surface, and may occupy a minority of the area of the surface.
Abstract:
A process for hydrophilic bonding first and second substrates, comprising: —bringing the first and second substrates into contact to form a bonding interface between main surfaces of the first and second substrates, and —applying a heat treatment to close the bonding interface. The process further comprises, before the step of bringing into contact, depositing, on the main surface of the first and/or second substrate, a bonding layer comprising a non-metallic material that is permeable to dihydrogen and that has, at the temperature of the heat treatment, a yield strength lower than that of at least one of the materials of the first substrate and of the second substrate located at the bonding interface. The layer has a thickness between 1 and 6 nm, and the heat treatment is carried out at a temperature lower than or equal to 900° C., and preferably lower than or equal to 600° C.
Abstract:
A system for fracturing a plurality of wafer assemblies, one of the wafers of each assembly comprising a plane of weakness and each assembly comprising a peripheral lateral groove comprises: a cradle for keeping the assemblies of the plurality of assemblies spaced apart and parallel to one another, along a storage axis; a separation device for applying separating forces in the peripheral groove of an assembly arranged in a fracture zone of the separating device, the separating force aiming to separate the wafers of the assembly from one another so as to initiate its fracture at the plane of weakness; and a drive device configured to move along the storage axis of the cradle opposite the separating device so as to successively place an assembly of the cradle in the fracture zone of the separation device.
Abstract:
A substrate for a front-side type image sensor includes a supporting semiconductor substrate, an electrically insulating layer, and a silicon-germanium semiconductor layer, known as the active layer. The electrically insulating layer includes a stack of dielectric and metallic layers selected such that the reflectivity of the stack in a wavelength range of between 700 nm and 3 μm is greater than the reflectivity of a silicon oxide layer having a thickness equal to that of the stack. The substrate also comprises a silicon layer between the electrically insulating layer and the silicon-germanium active layer. The disclosure also relates to a method for the production of such a substrate.