Abstract:
The present disclosure provides a method for forming patterns in a semiconductor device. The method includes providing a substrate and a patterning-target layer over the substrate; patterning the patterning-target layer to form a main pattern; forming a middle layer over the patterning-target layer and a hard mask layer over the middle layer; patterning the hard mask layer to form a first cut pattern; patterning the hard mask layer to form a second cut pattern, a combined cut pattern being formed in the hard mask layer as a union of the first cut pattern and the second cut pattern; transferring the combined cut pattern to the middle layer; etching the patterning-target layer using the middle layer as an etching mask to form a final pattern in the patterning-target layer. In some embodiments, the final pattern includes the main pattern subtracting an intersection portion between main pattern and the combined cut pattern.
Abstract:
A method includes receiving a substrate having a substrate feature; forming a first material layer over the substrate and in physical contact with the substrate feature; forming an etch mask over the first material layer; and applying a dynamic-angle (DA) plasma etching process to the first material layer through the etch mask to form a first material feature. Plasma flux of the DA plasma etching process has an angle of incidence with respect to a normal of the first material layer and the angle of incidence changes in a dynamic mode during the DA plasma etching process.
Abstract:
An integrated circuit includes a semiconductor substrate, an isolation region extending into, and overlying a bulk portion of, the semiconductor substrate, a buried conductive track comprising a portion in the isolation region, and a transistor having a source/drain region and a gate electrode. The source/drain region or the gate electrode is connected to the buried conductive track.
Abstract:
The present disclosure provides a method that includes forming a first pattern feature and a second pattern feature over a material layer by a first photolithographic process. The method also includes forming a first spacer feature on a sidewall of the first pattern feature and a second spacer feature on a sidewall of the second pattern feature. Additionally, the method includes forming a third pattern feature on the material layer between the first spacer feature and the second spacer feature by a second photolithographic process. In addition, the method includes removing the first and second spacer features to expose a portion of the material layer.
Abstract:
The present disclosure describes methods for transferring a desired layout into a target layer on a semiconductor substrate. An embodiment of the methods includes forming a first desired layout feature as a first line over the target layer; forming a spacer around the first line; depositing a spacer-surrounding material layer; removing the spacer to form a fosse pattern trench surrounding the first line; and transferring the fosse pattern trench into the target layer to form a fosse feature trench in the target layer, wherein the fosse feature trench surrounds a first portion of the target layer that is underneath a protection layer. In some embodiments, the method further includes patterning a second desired layout feature of the desired layout into the target layer wherein the fosse feature trench and the protection layer serve to self-align the second desired layout feature with the first portion of the target layer.
Abstract:
Semiconductor devices disclosed herein have minimum spacings that correlate with spacer widths. An exemplary semiconductor device includes a substrate and a target layer disposed over the substrate. The target layer includes a first target feature, a second target feature, and a third target feature. The second target feature is spaced a first distance from the first target feature, and the third target feature is spaced a second distance from the first target feature. The first distance corresponds with a first width of a first spacer fabricated during a first spacer patterning process, and the second distance corresponds with a second width of a second spacer fabricated during a second spacer patterning process.
Abstract:
The present disclosure provides a method for forming patterns in a semiconductor device. The method includes providing a substrate and a patterning-target layer over the substrate; patterning the patterning-target layer to form a main pattern; forming a middle layer over the patterning-target layer and a hard mask layer over the middle layer; patterning the hard mask layer to form a first cut pattern; patterning the hard mask layer to form a second cut pattern, a combined cut pattern being formed in the hard mask layer as a union of the first cut pattern and the second cut pattern; transferring the combined cut pattern to the middle layer; etching the patterning-target layer using the middle layer as an etching mask to form a final pattern in the patterning-target layer. In some embodiments, the final pattern includes the main pattern subtracting an intersection portion between main pattern and the combined cut pattern.
Abstract:
An integrated circuit device includes first and second features, each including an end portion arranged along a common axis, and separated by a space. The end portion of the first feature includes a first indention adjacent to the space. The end portion of the second feature includes a first indention adjacent to the space, mirroring the first indention of the first feature about the space. The end portions are substantially similar in shape.
Abstract:
A device includes a substrate feature disposed over a substrate. The substrate feature has a first length extending along a first direction and a second length extending along a second direction. The first length is greater than the second length. The device also includes a first material feature disposed over the substrate. The first material feature has a first surface in physical contact with the substrate feature and a second surface opposite to the first surface. The first surface has a third length extending along the first direction and a fourth length extending along the second direction. The third length is greater than the fourth length. The second surface has a fifth length extending along the first direction and a sixth length extending along the second direction. The sixth length is greater than the fifth length.
Abstract:
A method for forming patterns in a semiconductor device includes providing a substrate and a patterning-target layer formed over the substrate; forming a first feature in a first hard mask layer formed over the patterning-target layer; and forming a second feature in a second hard mask layer formed over the patterning-target layer. The first hard mask layer has a different etching selectivity from the second hard mask layer. The method further includes selectively removing a portion of the first feature within a first trench to form a reshaped first feature. In an embodiment, the first trench exposes a portion of the second feature, and the selectively removing of the first portion of the first feature does not etch the portion of the second feature.