摘要:
An SRAM includes three Si pillars. In upper parts of the Si pillars, a first load P-channel, a first driver N-channel, and a first selection N-channel are formed, and in lower parts of the Si pillars, a second load P-channel, a second driver N-channel, and a second selection N-channel are formed. At the same height in the Si pillars, a P+ layer and N+ layers that serve as drains are formed, and these layers are connected to connected gates surrounding the second load P-channel and the second driver N-channel. At the same height in the Si pillars, a P+ layer and N+ layers that serve as drains are formed, and these layers are connected to connected gates surrounding the first load P-channel and the first driver N-channel. Gates surrounding the first and second selection N-channels are connected to a word-line terminal.
摘要:
A semiconductor device includes a first planar semiconductor (e.g., silicon) layer, first and second pillar-shaped semiconductor (e.g., silicon) layers, a first gate insulating film, a first gate electrode, a second gate insulating film, a second gate electrode, a first gate line connected to the first and second gate electrodes, a first n-type diffusion layer, a second n-type diffusion layer, a first p-type diffusion layer, and a second p-type diffusion layer. A center line extending along the first gate line is offset by a first predetermined amount from a line connecting a center of the first pillar-shaped semiconductor layer and a center of the second pillar-shaped semiconductor layer.
摘要:
A semiconductor device includes a planar interconnection layer formed on a substrate and made of a semiconductor, a first pillar-shaped semiconductor layer formed on the interconnection layer, a semiconductor-metal compound layer formed so as to cover the entire upper surface of the interconnection layer except for a bottom portion of the first pillar-shaped semiconductor layer, a first gate insulating film surrounding the first pillar-shaped semiconductor layer, a first gate electrode surrounding the first gate insulating film, and a first gate line connected to the first gate electrode.
摘要:
A pillar-shaped semiconductor memory device includes a silicon pillar, and a tunnel insulating layer, a data charge storage insulating layer, a first interlayer insulating layer, and a first conductor layer, which surround an outer periphery of the silicon pillar in that order, and a second interlayer insulating layer that is in contact with an upper surface or a lower surface of the first conductor layer. A side surface of the second interlayer insulating layer facing a side surface of the first interlayer insulating layer is separated from the side surface of the first interlayer insulating layer with a distance therebetween, the distance being larger than a distance from the side surface of the first interlayer insulating layer to a side surface of the first conductor layer facing the side surface of the first interlayer insulating layer.
摘要:
A semiconductor device production method includes a first step of forming a planar silicon layer on a silicon substrate and forming first and second pillar-shaped silicon layers on the planar silicon layer; a second step of forming a gate insulating film around the first and second pillar-shaped silicon layers, forming a metal film and a polysilicon film around the gate insulating film, controlling a thickness of the polysilicon film to be smaller than a half of a distance between the first and second pillar-shaped silicon layers, depositing a resist, exposing the polysilicon film on side walls of upper portions of the first and second pillar-shaped semiconductor layers, etching-away the exposed polysilicon film, stripping the third resist, and etching-away the metal film; and a third step of forming a resist for forming a gate line and performing anisotropic etching to form a gate line and first and second gate electrodes.
摘要:
A semiconductor device includes a P+ region and an N+ region functioning as sources of SGTs and disposed in top portions of Si pillars formed on an i-layer substrate. Connections between a power supply wiring metal layer and the P+ region and between a ground wiring metal layer and the N+ region are established on the entire surfaces of low-resistance Ni silicide layers that are respectively in contact with the P+ region and the N+ region and formed on outer peripheries of the Si pillars. Lower ends of the power supply wiring metal layer and the ground wiring metal layer are located at a height of surfaces of HfO layers near the boundaries between the P+ region and a channel and between the N+ region and a channel, respectively.
摘要:
In a method for producing a semiconductor device, Si pillars that include i-layers, N+ regions that serve as lower impurity regions, N+ regions and a P+ region that serve as upper impurity regions, and i-layers are formed by using SiO2 layers as an etching mask. Thus, surrounding gate MOS transistors (SGTs) are produced in which the upper impurity regions and the lower impurity regions respectively function as impurity layers constituting a source or a drain of the SGTs formed in upper portions and lower portions of the Si pillars.
摘要:
In a first step, a planar silicon layer is formed on a silicon substrate and first and second pillar-shaped silicon layers are formed on the planar silicon layer; a second step includes forming an oxide film hard mask on the first and second pillar-shaped silicon layers, and forming a second oxide film on the planar silicon layer, the second oxide film being thicker than a gate insulating film; and a third step includes forming the gate insulating film around each of the first pillar-shaped silicon layer and the second pillar-shaped silicon layer, forming a metal film and a polysilicon film around the gate insulating film, the polysilicon film having a thickness that is smaller than one half a distance between the first pillar-shaped silicon layer and the second pillar-shaped silicon layer, forming a third resist for forming a gate line, and performing anisotropic etching to form the gate line.
摘要:
A method for producing a semiconductor device includes a first step including forming a planar silicon layer and forming first and second pillar-shaped silicon layers; a second step including forming a gate insulating film around each of the first and second pillar-shaped silicon layers, forming a metal film and a polysilicon film around the gate insulating film, the thickness of the polysilicon film being smaller than half of a distance between the first and second pillar-shaped silicon layers, forming a third resist, and forming a gate line; and a third step including depositing a fourth resist so that a portion of the polysilicon film on an upper side wall of each of the first and second pillar-shaped silicon layers is exposed, removing the exposed portion of the polysilicon film, removing the fourth resist, and removing the metal film to form first and second gate electrodes.
摘要:
A memory device includes pages each constituted by memory cells, and a page write operation and a page erase operation are performed. First and second impurity layers and first and second gate conductor layers in each memory cell is connected to a source line, a bit line, a word line, and a driving control line. In a page read operation, page data is read. In the page write and read operations, a selected driving control line is lowered to zero volt at a first reset time, the driving control line is isolated from a driving circuit at a second reset time, thereby putting the driving control line in a zero-volt floating state, and a selected word line is set at zero volt at a third reset time, thereby putting the driving control line in a negative-voltage floating state by capacitive coupling between the word line and the driving control line.