Abstract:
The present invention provides a semiconductor structure comprising a wafer and an aligning mark. The wafer has a dicing region which comprises a central region, a middle region surrounds the central region, and a peripheral region surrounds the middle region. The aligning mark is disposed in the dicing region, wherein the alignment mark is a mirror symmetrical pattern. The aligning mark comprises a plurality of second patterns in the middle region and a plurality of third patterns disposed in peripheral region, wherein each third pattern comprises a plurality of lines, and a width of the line is 10 times less than a width of the L-shapes. The present invention further provides a method of forming the same.
Abstract:
The present invention provides a method for forming a semiconductor structure, comprising: firstly, a substrate is provided, having a first fin structure and a second fin structure disposed thereon, next, a first isolation region is formed between the first fin structure and the second fin structure, a second isolation region is formed opposite the first fin structure from the first isolation region, and at least an epitaxial layer is formed on the side of the first fin structure and the second fin structure, wherein the epitaxial layer has a bottom surface, the bottom surface extending from the first fin structure to the second fin structure, and the bottom surface is lower than a bottom surface of the first isolation region and a top surface of the second isolation region, in addition, the epitaxial layer has a stepped-shaped sidewall profile.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a first region, a second region, and a third region; forming a plurality of spacers on the first region, the second region, and the third region; forming a first patterned mask to cover the spacers on the first region and the second region; and removing the spacers on the third region.
Abstract:
A method of removing a hard mask on a gate includes forming a first gate structure and a second gate structure. The first gate structure includes a first gate, a first hard mask disposed on the first gate and a first spacer surrounding the first gate and the first hard mask, wherein the second gate structure includes a second gate, a second hard mask disposed on the second gate and a second spacer surrounding the second gate and the second hard mask. Later, the first spacer surrounding the first hard mask and the second spacer surrounding the second hard mask are removed. After that, a dielectric layer is formed to cover the first hard mask and the second hard mask. Finally, the second dielectric layer, the first mask layer and the second mask layer are removed.
Abstract:
A nanowire transistor device includes a substrate, a plurality of nanowires formed on the substrate, and a gate surrounding at least a portion of each nanowire. The nanowires respectively include a first semiconductor core and a second semiconductor core surrounding the first semiconductor core. A lattice constant of the second semiconductor core is different from a lattice constant of the first semiconductor core.
Abstract:
A method of forming a semiconductor device includes following steps. Firstly, a substrate having a transistor is provided, where the transistor includes a source/drain region. A dielectric layer is formed on the substrate, and a contact plug is formed in the dielectric layer to electrically connect the source/drain region. Next, a mask layer is formed on the dielectric layer, where the mask layer includes a first layer and a second layer stacked thereon. After this a slot-cut pattern is formed on the second layer of the mask layer, and a contact slot pattern is formed on the first layer of the mask layer. Finally, the second layer is removed and a contact opening is formed by using the contact slot pattern on the first layer.
Abstract:
A manufacturing method of a semiconductor structure is provided. The manufacturing method includes the following steps. A substrate is provided. A fin structure and an inter-layer dielectric layer are formed on the substrate. A plurality of gate structures is formed on the substrate. A cap layer is formed on the gate structures. A hard mask is formed on the cap layer. A first patterned photoresist layer covering the gate structures is formed on the hard mask. The hard mask is etched and patterned to form a patterned hard mask, such that the patterned hard mask covers the gate structures. A second patterned photoresist layer including a plurality of openings corresponding to the fin structure is formed on the patterned hard mask. The cap layer and the inter-layer dielectric layer are etched to form a plurality of first trenches exposing part of the fin structure.
Abstract:
A method of forming a fin-shaped structure includes the following steps. A substrate having at least a fin structure thereon is provided. A liner is formed on sidewalls of the fin structure. An oxide layer is formed between the fin structure and the substrate. The fin structure is removed until a bottom layer of the fin structure is reserved, to form a recess between the liner. A buffer epitaxial layer and an epitaxial layer are sequentially formed in the recess. A top part of the liner is removed until sidewalls of the epitaxial layer are exposed. Moreover, a fin-shaped structure formed by said method is also provided.
Abstract:
The present invention provides a method for forming a semiconductor device having a metal gate. The method includes firstly, a substrate is provided, and a first semiconductor device and a second semiconductor device are formed on the substrate, having a first gate trench and a second trench respectively. Next, a bottom barrier layer is formed in the first gate trench and a second trench. Afterwards, a first pull back step is performed, to remove parts of the bottom barrier layer, and a first work function metal layer is then formed in the first gate trench. Next, a second pull back step is performed, to remove parts of the first work function metal layer, wherein the topmost portion of the first work function metal layer is lower than the openings of the first gate trench and the second gate trench.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming a spacer around the gate structure; and forming a buffer layer adjacent to the gate structure. Preferably, the buffer layer includes a crescent moon shape and the buffer layer includes an inner curve, an outer curve, and a planar surface connecting the inner curve and an outer curve along a top surface of the substrate, in which the planar surface directly contacts the outer curve on an outer sidewall of the spacer.