Abstract:
A catalyst, which is obtained by mixing a compound expressed by the following Structural Formula (1), a nitroalkane compound, a neodymium-containing compound, a sodium-containing compound, and a carbon structure:
Abstract:
A method for enhancing heterogeneous asymmetric selectivity and catalytic activity belongs to the field of catalytic asymmetric organic synthesis technology, the preparation method of the invention are as follows: firstly preparing the chiral L-amino acids intercalated LDHs by coprecipitation or ion-exchange method; exfoliating the chiral L-amino acids intercalated LDHs into dispersed system of chiral L-amino acids attached to the inorganic LDH nanosheets; then coordinating the L-amino acids in the above dispersed systems with the metal centers for different types of asymmetric catalytic reactions. The results show that the as-prepared catalyst can enhance the asymmetric selectivity effectively. Compared with the homogeneous counterparts under the same reaction conditions, the catalyst exhibits relatively higher yields and largely improves the selectivity of the asymmetric reaction products; and thus the chiral compounds with a higher optical purity can be obtained.
Abstract:
A method of producing an azole derivative according to the invention represented by Formula (XI) wherein R1 denotes a C1-C6 alkyl group, a C2-C6 alkenyl group or a C2-C6 alkynyl group; R2 denotes a C1-C4 alkyl group; each Y denotes a halogen atom, a C1-C4 alkyl group, a C1-C4 haloalkyl group, a C1-C4 alkoxy group, a C1-C4 haloalkoxy group, a phenyl group, a cyano group or a nitro group; and m denotes 0 to 5; when m is 2 or more, each Y may be the same or different. As a result, an azole derivative contained as an active ingredient in an agro-horticultural agent having an excellent controlling effect on diseases can be provided.
Abstract:
An object of the present invention is to provide an optically active bicyclic γ-amino acid derivative in a high purity. The object can be attained by a mixture of compounds represented by the general formulas (I) and (I′), or a method for producing a compound represented by the general formula (VII) or a salt thereof via the compound (I): wherein R1 and R2 each represent a C1-6 alkyl group or the like; and R3 represents a cyano group or the like,
Abstract:
The invention provides a compound having a heterocyclic skeleton of formula (I): wherein the substituents are as defined in the specification, as well as a tautomer thereof or a salt thereof. The invention also provides asymmetric synthesis methods involving the use of such a compound, tautomer thereof, or salt thereof, as a catalyst.
Abstract:
The present invention relates to a covalently organo-modified LDH (LDH/APTES) was found to be an efficient and reusable heterogeneous catalyst for C—C bond forming reactions (i.e. Aldol condensation, Knoevenagel condensation, Henry reaction, Michael addition). More particularly, this catalyst shows consistent activity for several cycles in C—C bond forming reaction. These catalysts were successfully characterized by XRD, FT-IR, 29Si CP MAS NMR.
Abstract translation:本发明涉及共价有机改性的LDH(LDH / APTES)是用于C-C键形成反应的有效且可重复使用的非均相催化剂(即Aldol缩合,Knoevenagel缩合,亨利反应,迈克尔加成)。 更具体地说,该催化剂在C-C键形成反应中显示出几个循环的一致的活性。 这些催化剂通过XRD,FT-IR,29Si CP MAS NMR成功表征。
Abstract:
A catalyst for an organic reaction and a method of using a catalyst in an organic reaction are provided. The catalyst for an addition or condensation reaction includes a graphene oxide including an oxygen functional group, and the catalyst is configured to promote the addition or condensation reaction by bonding the oxygen functional group with an alkali metal ion or alkali earth metal ion during the addition or condensation reaction.
Abstract:
A process of preparing a nitroalcohol, e.g., 2-nitro-2-methyl-1-propane, from a nitropolyol, e.g., 2-nitro-2 -methyl-1,3-propanediol, the process comprising the step of contacting under hydrogenation conditions the nitropolyol with hydrogen, a hydrogenation catalyst and, optionally, a chelating agent.
Abstract:
A method for oxidizing an alcohol, wherein oxidation is performed in the presence of a compound represented by the following formula (I) and a bulk oxidant, which enables efficient oxidation of secondary alcohols as well as primary alcohols, and can attain high reaction efficiency even when air is used as a bulk oxidant.