Abstract:
A method of molding a substrate containing a plurality of electronic devices by providing a carrier comprising a frame which includes an adhesive film. The substrate is mounted onto the adhesive film of the carrier such that the frame surrounds the substrate. The carrier is placed in a mold such that the frame is located at a clamping area of the mold and the substrate is located at a molding area of the mold where molding cavities are located. The frame is clamped at the clamping area while the electronic devices are located in the molding cavities for molding with an encapsulant.
Abstract:
A substrate support may include a body; an inner ring disposed about the body; an outer ring disposed about the inner ring forming a first opening therebetween; a first seal ring disposed above the first opening; a shadow ring disposed above the inner ring, extending inward from the outer ring and forming a second opening between the shadow and outer rings; a second seal ring disposed above the second opening; a space at least partially defined by the body and the inner, outer, first, second, and shadow rings; a first gap defined between a processing surface of a substrate when present and the shadow ring; and a plurality of second gaps fluidly coupled to the space; wherein the first gap and the plurality of second gaps are configured such that, when a substrate is present, a gas provided to the space flows out of the space through the first gap.
Abstract:
A method of controlling the resistivity and morphology of a tungsten film is provided, comprising depositing a first film of a bulk tungsten layer on a substrate during a first deposition stage by (i) introducing a continuous flow of a reducing gas and a pulsed flow of a tungsten-containing compound to a process chamber to deposit tungsten on a surface of the substrate, (ii) flowing the reducing gas without flowing the tungsten-containing compound into the chamber to purge the chamber, and repeating steps (i) through (ii) until the first film fills vias in the substrate surface, increasing the pressure in the process chamber, and during a second deposition stage after the first deposition stage, depositing a second film of the bulk tungsten layer by providing a flow of reducing gas and tungsten-containing compound to the process chamber until a second desired thickness is deposited.
Abstract:
Methods for sequencing nucleic acids are presented. Sequencing is accomplished through the chemical amplification of the products of DNA synthesis and the detection of the chemically amplified products. In embodiments of the invention, a substrate is provided having a plurality of molecules of DNA to be sequenced attached and a plurality of molecules capable of chelating pyrophosphate ions attached, the DNA molecules to be sequenced are primed, and a next complementary nucleotide is incorporated and excised a plurality of times leading to the buildup of pyrophosphate ions locally around the DNA molecule to be sequenced. Pyrophosphate ions are captured by the substrate-attached chelators and electronically detected to determine the identity of the next complementary nucleic acid in the DNA molecule to be sequenced. Additionally, devices and methods are provided for detecting biomolecules through the detection of pyrophosphate ions.
Abstract:
Embodiments of the invention provide an improved process for depositing tungsten-containing materials. The process utilizes soak processes and vapor deposition processes, such as atomic layer deposition (ALD) to provide tungsten films having significantly improved surface uniformity and production level throughput. In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes positioning a substrate within a process chamber, wherein the substrate contains an underlayer disposed thereon, exposing the substrate sequentially to a tungsten precursor and a reducing gas to deposit a tungsten nucleation layer on the underlayer during an ALD process, wherein the reducing gas contains a hydrogen/hydride flow rate ratio of about 40:1, 100:1, 500:1, 800:1, 1,000:1, or greater, and depositing a tungsten bulk layer on the tungsten nucleation layer. The reducing gas contains a hydride compound, such as diborane, silane, or disilane.
Abstract:
In a structure and method for connecting junction box to solar cell module, at least one support pin is embedded in the laminated layers of the solar cell module. The support pin includes at least a plug section, a support section and a stop section. The support section is embedded in the laminated layers of the solar cell module and can therefore provide support strength to the junction box. The stop section is pressed against an end surface of the solar cell module to enable a limiting and lateral supporting effect. The plug section is exposed from a layer of fixing sealant applied on the end surface of the solar cell module for plugging in and accordingly holding to a socket section of the junction box, protecting the junction box against separating from the solar cell module before the fixing sealant is fully cured.
Abstract:
A battery cell of a cylindrical lithium ion battery includes an anode plate and a cathode plate wounded together with an insulating separator disposed between the anode plate and the cathode plate. The anode plate includes an anode current collector and an anode film formed on the anode current collector. The anode current collector is formed with an anode exposed portion without the anode film formed thereon. The anode exposed portion is soldered with a number of anode terminals. The cathode plate includes a cathode current collector and a cathode film formed on the cathode current collector. The cathode current collector is provided with a cathode exposed portion without the cathode film formed thereon. The cathode exposed portion is soldered with a number of cathode terminals. The anode terminals and the cathode terminals are disposed at two opposite sides of the battery cell.
Abstract:
Host cells comprising recombinant vectors encoding the FK-520 polyketide synthase and FK-520 modification enzymes can be used to produce the FK-520 polyketide. Recombinant DNA constructs comprising one or more FK-520 polyketide synthase domains, modules, open reading frames, and variants thereof can be used to produce recombinant polyketide synthases and a variety of different polyketides with application as pharmaceutical and veterinary products.
Abstract:
Host cells comprising recombinant vectors encoding the FK-520 polyketide synthase and FK-520 modification enzymes can be used to produce the FK-520 polyketide. Recombinant DNA constructs comprising one or more FK-520 polyketide synthase domains, modules, open reading frames, and variants thereof can be used to produce recombinant polyketide synthases and a variety of different polyketides with application as pharmaceutical and veterinary products.
Abstract:
Embodiments of the invention described herein generally provide methods for forming cobalt silicide layers and metallic cobalt layers by using various deposition processes and annealing processes. In one embodiment, a method for forming a cobalt silicide material on a substrate is provided which includes treating the substrate with at least one preclean process to expose a silicon-containing surface, depositing a cobalt silicide material over the silicon-containing surface, and depositing a copper material over the cobalt silicide material. In another embodiment, a metallic cobalt material may be deposited over the cobalt silicide material prior to depositing the copper material. In one example, the copper material may be formed by depositing a copper seed layer and a copper bulk layer on the substrate. The copper seed layer may be deposited by a PVD process and the copper bulk layer may be deposited by an ECP process or an electroless deposition process.