Abstract:
A thin film vertical light emitting diode (VLED) structure and process are described. Features of the design include the following: bonding multiple smaller diameter LED wafers to a larger diameter carrier wafer, which reduces the per LED fabrication cost; using thin film techniques to metalize the anode and cathode and using respective annealing steps prior to photolithography patterning of LED structures; enabling the thin film process by semi-permanent bonding techniques which provide thermal and chemical stability, while allowing bond release at an opportune time by thermal, optical, or chemical means; using epitaxial substrate removal techniques to separate the entire LED film from its growth substrate; and patterning various vertical LED devices which can emit light from the n-type side (cathode), p-type side (anode), side wall, or a combination of the surfaces by using mirror layers and electrically conductive and optically transmissive layers.
Abstract:
Compositions, methods and manufactures are disclosed for an ultraviolet-curable conductive ink and for a binding medium which may be utilized for both a dielectric ink and for a conductive ink. A representative ultraviolet-curable binding medium composition comprises: a difunctional aliphatic polycarbonate urethane acrylate oligomer; a monofunctional monomer such as an isophoryl acrylate monomer or an acrylate ester monomer; a difunctional monomer such as a difunctional alkoxylated acrylate or methacrylate monomer; a first photoinitiator such as an α-hydroxyketone class photoinitiator; and a second photoiniator such as an α-aminoketone class photoinitiator. A plurality of conductive particles, such as silver particles and graphene particles, may be included in the binding medium to provide an ultraviolet-curable conductive ink and, when cured, a conductive layer or wire, for example.
Abstract:
An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, an exemplary metallic nanowire ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanowires at least partially coated with a first polymer comprising polyvinyl pyrrolidone having a molecular weight less than about 50,000; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, and mixtures thereof; and a second polymer or polymeric precursor such as polyvinyl pyrrolidone or a polyimide, having a molecular weight greater than about 500,000.
Abstract:
Systems and methods for fabricating nanostructures using other nanostructures as templates. A method includes mixing a dispersion and a reagent solution. The dispersion includes nanostructures such as nanowires including a first element such as copper. The reagent solution includes a second element such as silver. The second element at least partially replaces the first element in the nanostructures. The nanostructures are optionally washed, filtered, and/or deoxidized.
Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between 2.5 to 7 microns; a plurality of first terminals spaced apart and coupled to the light emitting region peripherally on a first side, each first terminal of the plurality of first terminals having a height between about 0.5 to 2 microns; and one second terminal coupled centrally to a mesa region of the light emitting region on the first side, the second terminal having a height between 1 to 8 microns.
Abstract:
Over a flexible substrate are deposited stacked pixel layers including a bottom layer of LEDs forming blue pixels, a middle layer of LEDs forming green pixels, and a top layer of LEDs forming red pixels. Each LED die comprises an LED portion and an integrated transistor portion. Applying a voltage to a control terminal of the transistor portion energizes the LED portion. The pixels are substantially transparent, due to the LEDs being microscopic and the pixel areas being much larger, to allow light from the underlying layers to pass through. The three layers of pixels are aligned so that a combination of a single top red pixel, a single underlying green pixel, and a single underlying blue pixel form a single multi-color pixel. The different layers have transparent column and row lines.
Abstract:
In one embodiment, a printed security mark comprises a random arrangement of printed LEDs and a wavelength conversion layer. During fabrication of the mark, the LEDs are energized, and the resulting dot pattern is converted into a unique digital first code and stored in a database. The emitted spectrum vs. intensity and persistence of the wavelength conversion layer is also encoded in the first code. The mark may be on a credit card, casino chip, banknote, passport, etc. to be authenticated. For authenticating the mark, the LEDs are energized and the dot pattern, spectrum vs. intensity, and persistence are converted into a code and compared to the first code stored in the database. If there is a match, the mark is authenticated.
Abstract:
An exemplary printable composition comprises a liquid or gel suspension of a plurality of metallic nanofibers or nanowires; a first solvent; and a viscosity modifier, resin, or binder. In various embodiments, the metallic nanofibers are between about 10 microns to about 100 microns in length, are between about 10 nm to about 120 nm in diameter, and are typically functionalized with a coating or partial coating of polyvinyl pyrrolidone or a similar compound. An exemplary metallic nanofiber ink which can be printed to produce a substantially transparent conductor comprises a plurality of metallic nanofibers; one or more solvents such as 1-butanol, ethanol, 1-pentanol, n-methylpyrrolidone, cyclohexanone, cyclopentanone, 1-hexanol, acetic acid, cyclohexanol, or mixtures thereof; and a viscosity modifier, resin, or binder such as polyvinyl pyrrolidone or a polyimide, for example.
Abstract:
Printed micro-LEDs have a top metal anode electrode that is relatively tall and narrow and a bottom cathode electrode. After the LED ink is cured, the bottom electrodes are in electrical contact with a conductive layer on a substrate. The locations of the LEDs are random. A thin dielectric layer is then printed between the LEDs, and a thin conductive layer, such as a nano-wire layer, is then printed over the dielectric layer to contact the anode electrodes. The top conductive layer over the tall anode electrodes has bumps corresponding with the locations of the LEDs. An omniphobic liquid is then printed which only resides in the “low” areas of the top conductive layer between the bumps. Any optical material is then uniformly printed over the resulting surface. The printed optical material accumulates only on the bump areas by adhesion and surface tension, so is self-aligned with the individual LEDs.
Abstract:
Pixel locations in an addressable display are defined by metal landings on a top surface of a flexible substrate, such as by depositing a metal film and etching the film. The substrate surface may be hydrophobic so that the hydrophobic surface is exposed between the metal landings. The substrate has conductive vias that connect the metal landings to traces on a bottom surface of the substrate for connection to addressing circuitry. LED ink is then blanket-printed over the top surface and cured to electrically connect bottom electrodes of the LEDs to the metal landings. LEDs that fall between the landings are ineffective. A dielectric layer is blanket-printed which exposes the top electrodes, and a transparent conductor layer is blanket-printed over the LEDs to connect all LEDs associated with an individual pixel location in parallel. Accordingly, all printed steps can be performed without any alignment.