Abstract:
A structure and method of manufacture for an improved multi-chip semiconductor package that reduces package resistance to a negligible level, and offers superior thermal performance. Housing of multiple dies is facilitated by providing electrically isolated lead frames that are separated from a common base carrier by a non-conductive layer of laminating material. A silicon die is attached inside a cavity formed in each lead frame. Direct connection of the active surface of the silicon die to the printed circuit board is then made by an array of solder bumps that is distributed across the surface of each die as well as the edges of the lead frame adjacent to each die.
Abstract:
A structure and method of manufacture for an improved multi-chip semiconductor package that reduces package resistance to a negligible level, and offers superior thermal performance. Housing of multiple dies is facilitated by providing electrically isolated lead frames that are separated from a common base carrier by a non-conductive layer of laminating material. A silicon die is attached inside a cavity formed in each lead frame. Direct connection of the active surface of the silicon die to the printed circuit board is then made by an array of solder bumps that is distributed across the surface of each die as well as the edges of the lead frame adjacent to each die.
Abstract:
A semiconductor device that does not include a molded body or package. The semiconductor device includes a substrate and a die coupled to the substrate. The die is coupled to the substrate such that the source and gate regions of the die, assuming a MOSFET-type device, are coupled to the substrate. Solder balls are provided adjacent to the die such that when the semiconductor device is coupled to a printed circuit board, the exposed surface of the serves as the drain connections while the solder balls serve as the source and gate connections.
Abstract:
Embodiments of the present invention relate to a method of forming a magnetics package. The method includes providing a primary coil configured to conduct a current flow; providing a substrate having a surface and a secondary coil extending from the surface, the secondary coil configured to conduct a current flow; encapsulating the secondary coil in a secondary mold compound; removing the substrate from the secondary coil, thereby leaving the secondary coil embedded in the secondary mold compound; and inductively coupling the secondary coil to the primary coil through a magnetic core, the secondary coil is electrically isolated from the primary coil, wherein a current flow in the primary coil produces a magnetic field in the magnetic core, and the magnetic field in the magnetic core induces a current flow in the secondary coil.
Abstract:
A leadframe based photovoltaic assembly and method for assembling the same is disclosed. The photovoltaic assembly comprises a first and second mold compounds to effectuate the accurate placement of an optical concentrator above a photovoltaic cell. The photovoltaic assembly is able to be assembled using existing mature semiconductor packaging technologies.
Abstract:
One aspect of the invention pertains to an integrated circuit package with an embedded power stage. The integrated circuit package includes a first field effect transistor (FET) and a second FET that are electrically coupled with one another. The FETs are embedded in a dielectric substrate that is formed from multiple dielectric layers. The dielectric layers are laminated together with one or more foil layers that help form an electrical interconnect for the package. Various embodiments relate to method of forming the above package.
Abstract:
Semiconductor die packages are disclosed. An exemplary semiconductor die package includes a premolded substrate. The premolded substrate can have a semiconductor die attached to it, and an encapsulating material may be disposed over the semiconductor die.
Abstract:
A semiconductor die package capable of being mounted to a motherboard is disclosed. The semiconductor die package includes a substrate, and a first semiconductor die mounted on the substrate, where the first semiconductor die includes a first vertical device comprising a first input region and a first output region at opposite surfaces of the first semiconductor die. The semiconductor die package includes a second semiconductor die mounted on the substrate, where second semiconductor die comprises a second vertical device comprising a second input region and a second output region at opposite surfaces of the second semiconductor die. A substantially planar conductive node clip electrically communicates the first output region in the first semiconductor die and the second input region in the second semiconductor die. The first semiconductor die and the second semiconductor die are between the substrate and the conductive node clip.
Abstract:
Semiconductor die packages are disclosed. An exemplary semiconductor die package includes a premolded substrate. The premolded substrate can have a semiconductor die attached to it, and an encapsulating material may be disposed over the semiconductor die.
Abstract:
A chip device that includes a leadframe, a die and a mold compound. The backside of the die is metallized and exposed through a window defined within a mold compound that encapsulates the die when it is coupled to the leadframe. Leads on the leadframe are coupled to source and gate terminals on the die while the metallized backside of the die serves as the drain terminals.