Abstract:
Method and systems for patterning a hardmask film using ultraviolet light is disclosed according to one embodiment of the invention. Embodiments of the present invention alleviate the processing problem of depositing and etching photoresist in order to produce a hardmask pattern. A hardmask layer, such as, silicon oxide, is first deposited on a substrate within a deposition chamber. In some cases, the hardmask layer is baked or annealed following deposition. After which, portions of the hardmask layer are exposed with ultraviolet light. The ultraviolet light produces a pattern of exposed and unexposed portions of hardmask material. Following the exposure, an etching process, such as a wet etch, may occur that removes the unexposed portions of the hardmask. Following the etch, the hardmask may be annealed, baked or subjected to a plasma treatment.
Abstract:
Methods are disclosed for activating dopants in a doped semiconductor substrate. A carbon precursor is flowed into a substrate processing chamber within which the doped semiconductor substrate is disposed. A plasma is formed from the carbon precursor in the substrate processing chamber. A carbon film is deposited over the substrate with the plasma. A temperature of the substrate is maintained while depositing the carbon film less than 500° C. The deposited carbon film is exposed to electromagnetic radiation for a period less than 10 ms, and has an extinction coefficient greater than 0.3 at a wavelength comprised by the electromagnetic radiation.
Abstract:
A method, a system and a computer readable medium for integrated in-vacuo repair of low-k dielectric thin films damaged by etch and/or strip processing. A repair chamber is integrated onto a same platform as a plasma etch and/or strip chamber to repair a low-k dielectric thin film without breaking vacuum between the damage event and the repair event. UV radiation may be provided on the integrated etch/repair platform in any combination of before, after, or during the low-k repair treatment to increase efficacy of the repair treatment and/or stability of repair.
Abstract:
Methods of curing a silicon oxide layer on a substrate are provided. The methods may include the processes of providing a semiconductor processing chamber and a substrate and forming an silicon oxide layer overlying at least a portion of the substrate, the silicon oxide layer including carbon species as a byproduct of formation. The methods may also include introducing an acidic vapor into the semiconductor processing chamber, the acidic vapor reacting with the silicon oxide layer to remove the carbon species from the silicon oxide layer. The methods may also include removing the acidic vapor from the semiconductor processing chamber. Systems to deposit a silicon oxide layer on a substrate are also described.
Abstract:
A process is provided for depositing an silicon oxide film on a substrate disposed in a process chamber. A process gas that includes a halogen source, a fluent gas, a silicon source, and an oxidizing gas reactant is flowed into the process chamber. A plasma having an ion density of at least 1011 ions/cm3 is formed from the process gas. The silicon oxide film is deposited over the substrate with a halogen concentration less than 1.0%. The silicon oxide film is deposited with the plasma using a process that has simultaneous deposition and sputtering components. The flow rate of the halogen source to the process chamber to the flow rate of the silicon source to the process chamber is substantially between 0.5 and 3.0.
Abstract translation:提供了一种在设置在处理室中的衬底上沉积氧化硅膜的工艺。 包括卤素源,流动气体,硅源和氧化性气体反应物的处理气体流入处理室。 从处理气体形成具有至少1011个离子/ cm 3的离子密度的等离子体。 氧化硅膜以低于1.0%的卤素浓度沉积在衬底上。 使用具有同时沉积和溅射组分的工艺,用等离子体沉积氧化硅膜。 卤素源到处理室的流速与硅源到处理室的流速基本上在0.5和3.0之间。
Abstract:
A method of forming a silicon oxide layer on a substrate. The method includes providing a substrate and forming a first silicon oxide layer overlying at least a portion of the substrate, the first silicon oxide layer including residual water, hydroxyl groups, and carbon species. The method further includes exposing the first silicon oxide layer to a plurality of silicon-containing species to form a plurality of amorphous silicon components being partially intermixed with the first silicon oxide layer. Additionally, the method includes annealing the first silicon oxide layer partially intermixed with the plurality of amorphous silicon components in an oxidative environment to form a second silicon oxide layer on the substrate. At least a portion of amorphous silicon components are oxidized to become part of the second silicon oxide layer and unreacted residual hydroxyl groups and carbon species in the second silicon oxide layer are substantially removed.
Abstract:
Methods of curing a silicon oxide layer on a substrate are provided. The methods may include the processes of providing a semiconductor processing chamber and a substrate and forming an silicon oxide layer overlying at least a portion of the substrate, the silicon oxide layer including carbon species as a byproduct of formation. The methods may also include introducing an acidic vapor into the semiconductor processing chamber, the acidic vapor reacting with the silicon oxide layer to remove the carbon species from the silicon oxide layer. The methods may also include removing the acidic vapor from the semiconductor processing chamber. Systems to deposit a silicon oxide layer on a substrate are also described.
Abstract:
A plasma treatment process for increasing the tensile stress of a silicon wafer is described. Following deposition of a dielectric layer on a substrate, the substrate is lifted to an elevated position above the substrate receiving surface and exposed to a plasma treatment process which treats both the top and bottom surface of the wafer and increases the tensile stress of the deposited layer. Another embodiment of the invention involves biasing of the substrate prior to plasma treatment to bombard the wafer with plasma ions and raise the temperature of the substrate. In another embodiment of the invention, a two-step plasma treatment process can be used where the substrate is first exposed to a plasma at a processing position directly after deposition, and then raised to an elevated position where both the top and bottom of the wafer are exposed to the plasma.
Abstract:
Methods of filling a gap on a substrate with silicon oxide are described. The methods may include the steps of introducing an organo-silicon precursor and an oxygen precursor to a deposition chamber, reacting the precursors to form a first silicon oxide layer in the gap on the substrate, and etching the first silicon oxide layer to reduce the carbon content in the layer. The methods may also include forming a second silicon oxide layer on the first layer, and etching the second layer to reduce the carbon content in the second layer. The silicon oxide layers are annealed after the gap is filled.
Abstract:
A process is provided for depositing an silicon oxide film on a substrate disposed in a process chamber. A process gas that includes a halogen source, a fluent gas, a silicon source, and an oxidizing gas reactant is flowed into the process chamber. A plasma having an ion density of at least 1011 ions/cm3 is formed from the process gas. The silicon oxide film is deposited over the substrate with a halogen concentration less than 1.0%. The silicon oxide film is deposited with the plasma using a process that has simultaneous deposition and sputtering components. The flow rate of the halogen source to the process chamber to the flow rate of the silicon source to the process chamber is substantially between 0.5 and 3.0.
Abstract translation:提供了一种在设置在处理室中的衬底上沉积氧化硅膜的工艺。 包括卤素源,流动气体,硅源和氧化性气体反应物的处理气体流入处理室。 从处理气体形成离子密度为至少10 11个/ cm 3的等离子体。 氧化硅膜以低于1.0%的卤素浓度沉积在衬底上。 使用具有同时沉积和溅射组分的工艺,用等离子体沉积氧化硅膜。 卤素源到处理室的流速与硅源到处理室的流速基本上在0.5和3.0之间。