摘要:
A semiconductor structure including a silicon wafer having silicon regions, and at least one GexSi1−x region integrated within the silicon regions. The silicon and GexSi1−x regions can be substantially coplanar surfaces. The structure can include at least one electronic device configured in the silicon regions, and at least one electronic device of III-V materials configured in said at least one GexSi1−x region. The structure can be, for example, an integrated III-V/Si semiconductor microchip. In accordance with another embodiment of the invention there is provided a method of fabricating a semiconductor structure, including providing a silicon wafer with a surface; forming a pattern of vias within the surface of the wafer; and depositing regions of GexSi1−x within the vias. The method can include the step of processing the wafer so that the wafer and GexSi1−x regions have substantially coplanar surfaces. Another embodiment provides a method of fabricating a semiconductor structure, including providing a silicon wafer with a surface; depositing regions of GexSi1−x to the surface of the silicon wafer; and depositing silicon to the surface such that the deposited GexSi1−x regions are integrated within silicon.
摘要:
A method of processing semiconductor materials, including providing a monocrystalline silicon substrate having a (001) crystallographic surface orientation; off-cutting the substrate to an orientation from about 2.degree. to about 6.degree. offset towards the [110] direction; and epitaxially growing a relaxed graded layer of a crystalline GeSi on the substrate. A semiconductor structure including a monocrystalline silicon substrate having a (001) crystallographic surface orientation, the substrate being off-cut to an orientation from about 2.degree. to about 6.degree. offset towards the [110] direction; and a relaxed graded layer of a crystalline GeSi which is epitaxially grown on the substrate.
摘要:
Methods for forming solar cells include forming, over a substrate, a first junction comprising at least one III-V material and having a threading dislocation density of less than approximately 107 cm−2, and forming, over the first junction, a cap layer comprising silicon, wherein the substrate consists essentially of silicon.
摘要:
A method of fabricating a circuit comprising an nMOSFET includes providing a substrate, depositing a strain-inducing material comprising germanium over the substrate, and integrating a pMOSFET on the substrate, the pMOSFET comprising a strained channel having a surface roughness of less than 1 nm. The strain-inducing material is proximate to and in contact with the pMOSFET channel, the strain in the pMOSFET channel is induced by the strain-inducing material, and a source and a drain of the pMOSFET are at least partially formed in the strain-inducing material.
摘要:
Methods and structures for monolithically integrating monocrystalline silicon and monocrystalline non-silicon materials and devices are provided. In one structure, a monolithically integrated semiconductor device structure comprises a silicon substrate and a first monocrystalline semiconductor layer disposed over the silicon substrate, wherein the first monocrystalline semiconductor layer has a lattice constant different from a lattice constant of relaxed silicon. The structure also includes an insulating layer disposed over the first monocrystalline semiconductor layer in a first region and a monocrystalline silicon layer disposed over the insulating layer in the first region. The structure includes at least one silicon-based electronic device comprising an element including at least a portion of the monocrystalline silicon layer. The structure includes a second monocrystalline semiconductor layer disposed over at least a portion of the first monocrystalline semiconductor layer in a second region and absent from the first region, wherein the second monocrystalline semiconductor layer has a lattice constant different from the lattice constant of relaxed silicon. The structure also includes at least one III-V electronic device comprising an element including at least a portion of the second monocrystalline semiconductor layer.
摘要:
A semiconductor structure is provided. The semiconductor structure includes one or more III-IV material-based semiconductor layers. A tensile-strained Ge layer is formed on the one or more a III-IV material-based semiconductor layers. The tensile-strained Ge layer is produced through lattice-mismatched heteroepitaxy on the one or more a III-IV material-based semiconductor layers.
摘要:
Semiconductor structures and devices including strained material layers having impurity-free zones, and methods for fabricating same. Certain regions of the strained material layers are kept free of impurities that can interdiffuse from adjacent portions of the semiconductor. When impurities are present in certain regions of the strained material layers, there is degradation in device performance. By employing semiconductor structures and devices (e.g., field effect transistors or “FETs”) that have the features described, or are fabricated in accordance with the steps described, device operation is enhanced.
摘要:
Digital metamorphic alloy (DMA) buffer structures for transitioning from a bottom crystalline layer to a lattice mismatched top crystalline layer, and methods for manufacturing such layers are described. In some embodiments, a layered crystalline structure includes a first layer of a first crystalline material having a first in-plane lattice constant and a second layer of a second crystalline material disposed over the first layer and having a second in-plane lattice constant that is lattice mismatched with the first crystalline material. Multiple sets of buffer layers may be disposed between the first layer and the second layer. Each set is a digital metamorphic alloy including a buffer layer of a third crystalline material and a buffer layer of a fourth crystalline material where an effective in-plane lattice constant of each set falls between the first lattice of the first layer and the second lattice constant of the second layer.
摘要:
Methods for forming solar cells include forming, over a substrate, a first junction comprising at least one III-V material and having a threading dislocation density of less than approximately 107 cm−2, and forming, over the first junction, a cap layer comprising silicon, wherein the substrate consists essentially of silicon.
摘要:
Methods and structures for monolithically integrating monocrystalline silicon and monocrystalline non-silicon materials and devices are provided. In one structure, a monolithically integrated semiconductor device structure comprises a silicon substrate and a first monocrystalline semiconductor layer disposed over the silicon substrate, wherein the first monocrystalline semiconductor layer has a lattice constant different from a lattice constant of relaxed silicon. The structure further includes an insulating layer disposed over the first monocrystalline semiconductor layer in a first region and a monocrystalline silicon layer disposed over the insulating layer in the first region. The structure includes at least one silicon-based photodetector comprising an active region including at least a portion of the monocrystalline silicon layer. The structure also includes a second monocrystalline semiconductor layer disposed over at least a portion of the first monocrystalline semiconductor layer in a second region and absent from the first region, wherein the second monocrystalline semiconductor layer has a lattice constant different from the lattice constant of relaxed silicon. The structure includes at least one non-silicon photodetector comprising an active region including at least a portion of the second monocrystalline semiconductor layer.