Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a stack overlying a substrate. The stack includes a silicon germanium layer and a silicon layer, where the silicon germanium layer has a first germanium concentration. The stack is condensed to produce a second germanium concentration in the germanium layer, where the second germanium concentration is greater than the first germanium concentration. A fin is formed that includes the stack, and a gate is formed overlying the fin.
Abstract:
Methods for fabricating an integrated circuit are provided herein. In an embodiment, a method for fabricating an integrated circuit includes forming a gate electrode structure overlying a semiconductor substrate. A first sacrificial oxide layer is formed overlying the semiconductor substrate and a first implant mask is patterned overlying the first sacrificial oxide layer to expose a portion of the first sacrificial oxide layer adjacent the gate electrode structure. Conductivity determining ions are implanted into the semiconductor substrate, through the first sacrificial oxide layer. The first implant mask and the first sacrificial oxide layer are removed after implanting the conductivity determining ions into the semiconductor substrate.
Abstract:
In aspects of the present invention, a method of forming a semiconductor device is disclosed, wherein amorphous regions are formed at an early stage during fabrication and the amorphous regions are conserved during subsequent processing sequences, and an intermediate semiconductor device structure with amorphous regions are provided at an early stage during fabrication. Herein a gate structure is provided over a semiconductor substrate and amorphous regions are formed adjacent the gate structure. Source/drain extension regions or source/drain regions are formed in the amorphous regions. In some illustrative embodiments, fluorine may be implanted into the amorphous regions. After the source/drain extension regions and/or the source/drain regions are formed, a rapid thermal anneal process is performed.
Abstract:
A method of manufacturing a semiconductor device is provided, including forming a gate electrode of a dummy transistor device on a semiconductor substrate, forming a high-k material layer over and adjacent to the gate electrode and forming a metal layer on the high-k material layer over and adjacent to the gate electrode to form a capacitor.
Abstract:
Methods for forming gates without spacers and the resulting devices are disclosed. Embodiments may include forming a channel layer on a substrate; forming a dummy gate on the channel layer; forming an interlayer dielectric (ILD) on the channel layer and surrounding the dummy gate; forming a trench within the ILD and the channel layer by removing the dummy gate and the channel layer below the dummy gate; forming an un-doped channel region at the bottom of the trench; and forming a gate above the un-doped channel region within the trench.
Abstract:
A method of manufacturing a semiconductor device is provided, including forming a gate electrode of a dummy transistor device on a semiconductor substrate, forming a high-k material layer over and adjacent to the gate electrode and forming a metal layer on the high-k material layer over and adjacent to the gate electrode to form a capacitor.
Abstract:
Disclosed is an integrated circuit product comprised of a semiconductor substrate with a first PMOS active region and a second PMOS active region, of which only the second PMOS active region has a silicon germanium layer formed thereon, a first PMOS device formed in and above the first PMOS active region, the first PMOS device having a first gate structure, and a second PMOS device formed in and above the second PMOS active region, the second PMOS device having a second gate structure disposed on the silicon germanium layer.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, an integrated circuit includes a first transistor structure that includes an etch-stop material layer, a first workfunction material layer disposed over the etch-stop material layer, a second workfunction material layer disposed over the first workfunction material layer, and a metal fill material disposed over the second workfunction material layer. The integrated circuit further includes a second transistor structure that includes a layer of the etch-stop material, a layer of the second workfunction material disposed over the etch-stop material layer, and a layer of the metal fill material disposed over the second workfunction material layer. Still further, the integrated circuit includes a resistor structure that includes a layer of the etch-stop material, a layer of the metal fill material disposed over the etch-stop material layer, and a silicon material layer disposed over the metal fill material layer.
Abstract:
When forming field-effect transistors, a common problem is the formation of a Schottky barrier at the interface between a metal thin film in the gate electrode and a semiconductor material, typically polysilicon, formed thereupon. Fully silicided gates are known in the state of the art, which may overcome this problem. However, formation of a fully silicided gate is hindered by the fact that silicidation of the source and drain regions and of the gate electrode are normally performed simultaneously. The claimed method proposes two consecutive silicidation processes which are decoupled with respect to each other. During the first silicidation process, a metal silicide is formed forming an interface with the source and drain regions and without affecting the gate electrode. During the second silicidation, a metal silicide layer having an interface with the gate electrode is formed, without affecting the transistor source and drain regions.
Abstract:
Performance and/or uniformity of sophisticated transistors may be enhanced by incorporating a carbon species in the active regions of the transistors prior to forming complex high-k metal gate electrode structures. For example, a carbon species may be incorporated by ion implantation into the active region of a P-channel transistor and an N-channel transistor after selectively forming a threshold adjusted semiconductor material for the P-channel transistor, while the active region of the N-channel transistor is still masked.