Abstract:
The method for preventing epitaxial growth in a semiconductor device begins with patterning a photoresist layer over a semiconductor structure having a set of fin ends on a set of fins of a FinFET structure. The set of fins are isolated from one another by a first dielectric material. The photoresist is patterned over the set of fin ends so that it differs from the photoresist pattern over other areas of the FinFET structure. A set of dielectric blocks is formed on the set of fin ends using the photoresist pattern. The set of dielectric blocks prevents epitaxial growth at the set of fin ends in a subsequent epitaxial growth step. In another aspect of the invention, a semiconductor device includes a set of fin structures having a set of fin ends at a respective vertical surface of a fin structure and is separated by a set of trenches from other fin structures. Each of the fin structures has a top surface which is higher than a top surface of a dielectric material in the set of trenches. A set of dielectric blocks is disposed at the set of fin ends, the dielectric blocks having a top surface level with or above the top surfaces of the fin structures which inhibit excessive epitaxial growth at the fin ends.
Abstract:
A charge pump for an integrated circuit includes a substrate, first and second transistors and a capacitor. The first transistor includes first source and first drain regions disposed within the substrate and defining a first channel therebetween. The first source and first drain regions are implanted with one of an n-type and a p-type dopant. The second transistor includes second source and second drain regions disposed within the substrate and defining a second channel therebetween. The second source and second drain regions implanted with the same type dopant as the first source region. The capacitor includes a metal terminal and a substrate terminal with a dielectric therebetween. The substrate terminal is disposed within the substrate and implanted with the same type dopant as the first source region. The substrate terminal contacts the first drain region and second source region within the substrate to provide electrical continuity therebetween.
Abstract:
A method of forming a single diffusion break includes etching rows of fins into a substrate of a structure from a patterned fin hardmask, the remaining fin hardmask being self-aligned with the fins. A first dielectric fill material is disposed and planarized over the structure to expose the fin hardmask. A photoresist layer is disposed over the structure. An isolation region is patterned across the fins to form first and second parallel fin arrays, wherein any remaining photoresist layer has self-aligned edges which are self-aligned with the isolation region. The self-aligned edges are trimmed to expose end portions of the fin hardmask. The exposed end portions are removed. The remaining photoresist layer is removed. A second dielectric fill material is disposed and planarized over the structure to form a base for a single diffusion break (SDB) in the isolation region.
Abstract:
Methods are presented for facilitating fabricating stacked nanowire, field-effect transistors. The methods include: forming a cut mask spacer on a gate structure disposed above multiple layers above a substrate structure, the gate structure including a sidewall spacer along its sidewalls, and the cut mask spacer overlying the sidewall spacer; defining a stack structure by cutting through the multiple layers using the cut mask spacer and gate structure as a mask, and selectively etching at least one layer of the multiple layers to undercut, in part, the mask, where at least one other layer of the multiple layers remains un-etched by the selectively etching; and providing an alignment mask spacer over the gate structure and over end surfaces of the multiple layers below the gate structure, the alignment mask spacer facilitating etching the other layer(s) of the multiple layers to selectively expose, in part, end surfaces of the other layer(s).
Abstract:
Contact liners for integrated circuits and fabrication methods thereof are presented. The methods include: fabricating an integrated circuit structure having a first transistor having at least one of a p-type source region or a p-type drain region and a second transistor having at least one of an n-type source region or an n-type drain region, and the fabricating including: forming a contact liner at least partially over both the first transistor and the second transistor, the contact liner including a first contact liner material and a second contact liner material, wherein the first contact liner material is selected to facilitate electrical connection to the at least one p-type source region or p-type drain region of the first transistor, and the second contact liner material is selected to facilitate electrical connection to the at least one n-type source region or n-type drain region of the second transistor.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a fin protection layer around a fin, forming a sacrificial gate electrode above a section of the fin protection layer, forming at least one sidewall spacer adjacent the sacrificial gate electrode, removing the sacrificial gate electrode to define a gate cavity that exposes a portion of the fin protection layer, oxidizing at least the exposed portion of the fin protection layer to thereby form an oxidized portion of the fin protection layer, and removing the oxidized portion of the fin protection layer so as to thereby expose a surface of the fin within the gate cavity.
Abstract:
Methods are presented for facilitating fabricating stacked nanowire, field-effect transistors. The methods include: forming a cut mask spacer on a gate structure disposed above multiple layers above a substrate structure, the gate structure including a sidewall spacer along its sidewalls, and the cut mask spacer overlying the sidewall spacer; defining a stack structure by cutting through the multiple layers using the cut mask spacer and gate structure as a mask, and selectively etching at least one layer of the multiple layers to undercut, in part, the mask, where at least one other layer of the multiple layers remains un-etched by the selectively etching; and providing an alignment mask spacer over the gate structure and over end surfaces of the multiple layers below the gate structure, the alignment mask spacer facilitating etching the other layer(s) of the multiple layers to selectively expose, in part, end surfaces of the other layer(s).
Abstract:
Approaches for spacer chamfering in a replacement metal gate (RMG) device are provided. Specifically, a semiconductor device is provided with a set of fins formed from a substrate; a silicon-based layer conformally deposited over the set of fins; an etch-stop layer (e.g., titanium nitride (TiN)) formed over the silicon-based layer, the etch-stop layer being selective to at least one of: silicon, oxide, and nitride; a set of RMG structures formed over the substrate; a set of spacers formed along each of the set of RMG structures, wherein a vertical layer of material from each of the set of spacers is removed selective to the etch-stop layer. By chamfering each sidewall spacer, a wider area for subsequent work-function (WF) metal deposition is provided. Meanwhile, each transistor channel region is covered by the etch-stop layer (e.g., TiN), which maintains the original gate critical dimension during reactive ion etching.
Abstract:
Approaches for simultaneously providing a set of merged and unmerged fins in a fin field effect transistor device (FinFET) are disclosed. In at least one approach, the FinFET device includes: a set of merged fins and a set of unmerged fins formed from a substrate, the set of unmerged fins adjacent the set of merged fins; and a planar block formed from the substrate, the planar block adjacent one of: the set of merged fins, and the set of unmerged fins. The FinFET device further includes an epitaxial material over each of the set of merged fins and each of the set of unmerged fins, wherein the epitaxial material merges together over the set of merged fins and remains unmerged over the set of unmerged fins. In at least one approach, the set of merged fins and the set of unmerged fins is formed using a sidewall image transfer process.
Abstract:
Approaches for spacer chamfering in a replacement metal gate (RMG) device are provided. Specifically, a semiconductor device is provided with a set of fins formed from a substrate; a silicon-based layer conformally deposited over the set of fins; an etch-stop layer (e.g., titanium nitride (TiN)) formed over the silicon-based layer, the etch-stop layer being selective to at least one of: silicon, oxide, and nitride; a set of RMG structures formed over the substrate; a set of spacers formed along each of the set of RMG structures, wherein a vertical layer of material from each of the set of spacers is removed selective to the etch-stop layer. By chamfering each sidewall spacer, a wider area for subsequent work-function (WF) metal deposition is provided. Meanwhile, each transistor channel region is covered by the etch-stop layer (e.g., TiN), which maintains the original gate critical dimension during reactive ion etching.